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The acoustic attenuation performance of circular expansion chambers with
extended inlet/outlet is investigated. Three approaches are employed to
determine the transmission loss: (1) a two-dimensional, axisymmetric analytical
solution for the concentric con®guration; (2) a three-dimensional computational
solution based on the substructure boundary element±transfer impedance
matrix technique; and (3) experiments on an extended impedance tube set-up
with expansion chambers fabricated with ®xed inlet, outlet, and chamber
diameters, and varying lengths for the extended ducts and the chamber, and
varying o�set locations of the inlet and outlet. The transmission loss results
from all three approaches are shown to agree well for the concentric
con®gurations. The computational approach is also applied to determine the
acoustic attenuation performance of asymmetric expansion chambers with
extended inlet/outlet, which also compares well with the experiments. The e�ect
of geometry (lengths of the extended ducts and expansion chamber, and the
o�set angles of the asymmetric con®guration) on the multidimensional wave
propagation and acoustic attenuation performance is discussed in detail.

# 1999 Academic Press

1. INTRODUCTION

Expansion chambers with extended inlet/outlet exhibit a desirable acoustic
attenuation performance as a combination of usually broad band domes of a
simple expansion chamber and the resonant peaks of a quarter-wave resonator.
Based on the plane wave assumption, the four-pole parameters of this
con®guration are available [1], which may be used to predict the transmission
loss. The one-dimensional theory, however, excludes the effect of higher order
modes. Thus, while yielding reasonable predictions at lower frequencies, this
simplistic approach is expected to deviate from experimental results at higher
frequencies. The effect of higher order modes on the acoustic attenuation of
some related silencers has received considerable attention, including concentric
[2, 3] and asymmetric expansion chambers [4±10], ¯ow-reversing chambers [11,
12], and Helmholtz resonators [13]. For expansion chambers with extended inlet/
outlet, AÊ bom [14] developed, utilizing the mode-matching technique, a general
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three-dimensional analytical approach to evaluate the four-pole parameters
which incorporated higher order modes and yielding endplates. The transmission
loss for one speci®c con®guration is shown to agree well with the experiments.
The work, however, has chosen not to elaborate on the effect of geometry with
respect to the acoustic attenuation of these con®gurations.
The analytical solution is not applicable to the expansion chambers with offset

extended inlet/outlet ducts since the eigenfunctions of these con®gurations
cannot be determined. Numerical techniques, however, such as the ®nite element
method (FEM) and the boundary element method (BEM) can be used to predict
the acoustic attenuation performance of the same con®gurations. Sahasrabudhe
et al. [15] applied the substructure ®nite element technique to predict
transmission loss of expansion chambers with coaxial, as well as offset extended
inlet/outlet. The conventional single-domain BEM is not applicable directly to
the expansion chambers with extended ducts of thin wall due to the presence of
singular boundary, requiring the use of multi-domain BEM [16]. Ji et al. [17]
developed a substructure boundary element±transfer impedance matrix technique
which can be used to determine the acoustic attenuation of expansion chambers
with extended duct(s).
The objective of the present study is (1) to present a two-dimensional

axisymmetric analytical approach to determine the transmission loss of the
circular concentric expansion chambers with extended inlet/outlet; (2) to
investigate analytically, computationally and experimentally the effect of lengths
of extended ducts and the chambers on the acoustic attenuation performance;
and (3) to examine computationally and experimentally the effect of inlet/outlet
locations on the wave propagation and attenuation. While the main emphasis
and contribution of the work is on the multidimensional wave propagation and
attenuation, the limiting case of the planar wave behavior is also simply
superimposed to illustrate its application bounds as applied to the present
con®gurations. The effect of viscosity and yielding walls are neglected in both
analytical and computational studies, while mean ¯ow is excluded from all
approaches.
Following the Introduction, section 2 develops a two-dimensional

axisymmetric analytical approach, and section 3 brie¯y describes the boundary
element method. Section 4 compares the transmission loss results from the
analytical, computational and experimental approaches, as well as the one-
dimensional theory, and discusses the effect of geometry on the acoustic
attenuation performance of expansion chambers with extended inlet/outlet.
Section 5 concludes the study with some ®nal remarks.

2. ANALYTICAL APPROACH

For the two-dimensional sound propagation in a circular, concentric annular
rigid duct with inner radius a1 and outer radius a, the solution to the Helmholtz
equation [1]

r2P� k2P � 0 �1�
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can be written as [14, 18, 19]

P�r, z� �
X1
n�0
�A�n eÿjknz � Aÿn ejknz�Cn�r�, �2�

where P is the acoustic pressure; k is the wavenumber; (r, z) are the cylindrical
co-ordinates; j � �������ÿ1p

is the imaginary unit; A�n and Aÿn are the modal
amplitudes corresponding to waves travelling in the positive and negative z
directions;

Cn�r� � J0�bnr=a� ÿ �J1�bn�=Y1�bn��Y0�bnr=a� �3�
is the eigenfuction, bn is the root satisfying the radial boundary condition of

J1�bna1=a� ÿ �J1�bn�=Y1�bn��Y1�bna1=a� � 0, �4�
and n denotes the radial mode number;

kn � �k2 ÿ �bn=a�2�1=2 �5�
is the axial wavenumber of the mode (0, n). For a rigid duct, a propagating
wave has k> bn/a so that kn is real and eÿjknz does not decay in z; an evanescent
wave has k< bn/a so that kn is negative imaginary and eÿjknz decays exponentially
in z. Note that for a1=0 equation (4) reduces to J1(an)=0, the root here
being designated by an to distinguish from the root bn. The eigenfunction of
equation (3) now becomes Cn(r)= J0(anr/a) and the axial wavenumber
kn=[k2ÿ (an/a)2]1/2, which are identical to those of a simple circular duct, as
expected.
From the linearized momentum equation, jroU=ÿ@P/@z, the axial particle

velocity can be obtained as

U�r, z� � 1

ro

X1
n�0

kn�A�n eÿjknz ÿ Aÿn ejknz�Cn�r�, �6�

where r is the medium density, and o is the angular frequency. For a circular
concentric expansion chamber with extended inlet and outlet ducts, as shown in
Figure 1, equations (2) and (6) will be used for sound pressures and particle
velocities in regions A, B, C, D and E.
At the left wall of the chamber, the rigid endplate boundary condition

UBjz1�ÿl1 � 0 �on SB� �7�
gives, by using the orthogonality of the eigenfunction,

B�n � Bÿn eÿ2jkB, nl1 : �8�
At the expansion, the continuity conditions reveal, for the pressure and velocity,

PAjz1�0 � PCjz1�0, UAjz1�0 � UCjz1�0 �on SA�, �9, 10�

PBjz1�0 � PCjz1�0, UBjz1�0 � UCjz1�0 �on SB�: �11, 12�
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For the pressure continuity conditions, multiply both sides of equation (9) by
CA,s dS and integrate over SA to get, for s=0, 1, . . . ,1,

�A�s � Aÿs �hCA, sCA, siA �
X1
n�0
�C�n � Cÿn �hCC, nCA, siA; �13�

multiply both sides of equation (11) by CB, s dS and integrate over SB to get, for
s=0, 1, . . . ,1,

Bÿs �eÿ2jkB, sl1 � 1�hCB, sCB, siB �
X1
n�0
�C�n � Cÿn �hCC, nCB, siB; �14�

where h is denotes the integration of an expression over S. For the two velocity
continuity conditions, multiply both equations (10) and (12) by CC,s dS and
integrate equation (10) over SA and equation (12) over SB , and then add these
two integral equations to yield, for s=0, 1, . . . ,1,X1

n�0
kA, n�A�n ÿ Aÿn �hCA, nCC, siA �

X1
n�0

kB, nB
ÿ
n �eÿ2jkB, nl1 ÿ 1�hCB, nCC, siB

� kC, s�C�s ÿ Cÿs �hCC, sCC, siC: �15�
The integrals designated by h i in equations (13)±(15) are deferred to Appendix
A.
At the right wall of the chamber, the rigid endplate boundary condition

UDjz2�l2 � 0 �on SD� �16�

gives, by using the orthogonality of the eigenfunction,

Dÿn � D�n eÿjkD, nl2 : �17�
At the contraction, the continuity conditions require, for the pressure and the
velocity,

PCjz1�lc � PEjz2�0, UCjz1�lc � UEjz2�0 �on SE�, �18, 19�

PCjz1�lc � PDjz2�0, UCjz1�lc � UDjz2�0 �on SD�: �20, 21�

d1
A C E

D

d d2z2

B

z1

lcl1 l2

Figure 1. Circular expansion chamber with extended inlet and outlet ducts.
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Using the same procedure as for the expansion, equation (18) gives, for s=0,
1, . . . , 1,X1

n�0
�C�n eÿjkC, nlc � Cÿn ejkC, nlc�hCC, nCE, siE � �E�s � Eÿs �hCE, sCE, siE; �22�

equation (20) gives, for s=0, 1, . . . , 1,X1
n�0
�C�n eÿjkC, nlc � Cÿn ejkC, nlc�hCC, nCD, siD � D�s �1� eÿ2jkD, sl2�hCD, sCD, siD; �23�

and equations (19) and (21) give, for s=0, 1, . . . , 1,

kC, s�C�s eÿjkC, nlc ÿ Cÿs ejkC, nlc�hCC, sCC, siC

�
X1
n�0

kE, n�E�n ÿ Eÿn �hCE, nCC, siE �
X1
n�0

kD, nD
�
n �1ÿ eÿ2jkD, nl2�hCD, nCC, siD:

�24�
The integrals designated by h i in equations (22)±(24) are also deferred to
Appendix A. In comparison with AÊ bom, the present approach adds the two
integral equations for the velocity continuity conditions (equations (10), (12) and
(19), (21)) to get one analytical expression, at the expansion and contraction,
respectively, thereby reducing the number of equations.
To determine the transmission loss of the expansion chamber with extended

inlet and outlet ducts: (1) the dimensions of the inlet duct are assumed such that
the incoming wave A+ is planar, and its magnitude A�0 is chosen to be unity for
convenience; and (2) an anechoic termination is imposed at the exit of the
chamber by setting the re¯ected wave Eÿn to zero. Thus equations (13)±(15) and
(22)±(24) can give a large (theoretically in®nite) number of relations 6(s+1) for a
large number of unknowns 6(n+1). The unknowns are the pressure magnitudes
for incident and re¯ected waves in the regions A, B, C, D and E
�Aÿn , Bÿn , C�n , Cÿn , D�n and E�n ). Since higher modes have a diminishing effect on
the solution, s and n can be truncated to q resulting in 6(q+1) equations with
6(q+1) unknowns. The value of q needed for a converged solution depends on
the magnitude of the area transition, the length of the chamber, and the
frequency range of interest. For the geometries and frequencies investigated here,
q=5 were found to be suf®cient. Once equations (13)±(15) and (22)±(24) are
solved, the transmission loss is determined in the center of the outlet duct by

TL � ÿ20 log10 �a2=a1�
Xq
n�0

E�n eÿjkE, nle
�����

�����: �25�

Note that the non-propagating modes leaving the expansion chamber in the
outlet duct will decay rapidly over the short distance le due to the smaller duct
diameter. This distance is chosen so that the higher modes will have a negligible
effect on the transmission loss calculations.
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Setting q=0 in equations (13)±(15) and (22)±(24) readily gives the classical
transmission loss of a one-dimensional expansion chamber with extended inlet/
outlet as

TL � 20 log10
1

4m
j��m� 1� � j�mÿ 1� tan kl1���m� 1� � j�mÿ 1� tan kl2� ejklc

ÿ �mÿ 1�2�1ÿ j tan kl1��1ÿ j tan kl2� eÿjklc j, �26�
where a1= a2 is used and m=(a/a1)

2 is the ratio of cross-sectional areas.

3. BOUNDARY ELEMENT APPROACH

The boundary integral expression of Helmholtz equation (1) can be
represented as [16]

C�X�P�X� �
�
G

G�X, Y� @P
@n
�Y� ÿ P�Y� @G

@n
�X, Y�

� �
dG�Y�, �27�

here G is the boundary surface of the acoustic domain, n is the unit
normal vector on G directed away from the domain, the function
G(X, Y)=exp(ÿjkR)/4pR is Green's function of free space, where R is the
distance between any two points X and Y in the domain or on the surface, and
C(X) is a coef®cient which depends on the position of point X.
A numerical solution of the boundary integral equation (27) can be achieved

by discretizing the boundary surface of the domain into a number of elements.
By using discretization and numerical integration, the following algebraic system
of equations is obtained [16, 17]:

�H�fPg � �G�fUng, �28�
where [H] and [G] are the coef®cient matrices, and {P} and {Un} are the vectors
whose elements are the acoustic pressure P and outward normal particle velocity
Un on the boundary nodes, respectively.
In order to predict numerically the acoustic attenuation of expansion

chambers with extended inlet/outlet ducts by the boundary element method, the
multi-domain approach is necessary because of the presence of a singular
boundary [16]. As an effective multi-domain boundary element approach, the
substructure boundary element±transfer impedance matrix technique is employed
in this study. A detailed description of this technique is provided elsewhere [17].

4. RESULTS AND DISCUSSION

For all con®gurations, the present study considers d=15�32 cm for the
chamber diameter, d1= d2=4�86 cm for the inlet/outlet ducts, and two chamber
lengths with l=28�23 cm and l=40�84 cm. These dimensions match those of
two concentric expansion chambers in reference [2]. In order to determine
analytically the acoustic attenuation of expansion chambers with extended inlet/
outlet, the eigenvalues an, bn, gn in equations (13)±(15) and (22)±(24) need to be
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obtained ®rst. These eigenvalues are evaluated numerically from equation (4)
and are given in Table 1.
Figures 2±4 for l=28�23 cm compare the transmission loss for different

lengths of extended ducts (Figure 2: l1=8�0 cm, l2=0 cm; Figure 3: l1=0 cm,
l2=4�0 cm; Figure 4: l1=8�0 cm, l2=4�0 cm). The fundamental behavior will
be discussed ®rst in terms of analytical results. The ®rst two resonant peaks in
Figure 4 match those in Figures 2 and 3 because the lengths of extended inlet
and outlet ducts in Figure 4 are a combination of lengths in Figures 2 and 3.
The transmission loss of expansion chambers with extended inlet/outlet ducts
exhibit a superposition of domes and resonance peaks in the plane wave region.
The number of basic domes (by ignoring the resonances momentarily) increases
as the length of the expansion chamber is increased and satis®es equation (28) of
reference [2], which is supported by Figures 2 and 5 (Figure 2: l=28�23 cm, 4
domes; Figure 5: l=40�84 cm, 6 domes). The resonances are due to the
extended inlet/outlet ducts. As the lengths of the extended ducts are increased,

TABLE 1

The values of �n, �n, n for d=15� 32 cm and
d1= d2=4�86 cm

n 1 2 3 4 5

an 3�832 7�016 10�174 13�324 16�470
bn 4�807 9�322 13�887 18�468 23�057
gn 4�807 9�322 13�887 18�468 23�057
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Figure 2. Transmission loss of concentric expansion chamber with extended inlet/outlet;
l=28�23 cm, l1=8�0 cm, l2=0 cm: ÐÐ , 2-D analytical; *, experimental; ± ± ± , BEM; � � � � � � ,
1-D analytical.
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for example, from l1=8�0 cm of Figure 2 to l1=12�0 cm of Figure 6, the

number of resonance peaks increases and the resonance frequencies are

lowered.
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Figure 3. Transmission loss of concentric expansion chamber with extended inlet/outlet;
l=28�23 cm, l1=0 cm, l2=4�0 cm: ÐÐ , 2-D analytical; *, experimental; ± ± ± , BEM; � � � � � � ,
1-D analytical.
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Figure 4. Transmission loss of concentric expansion chamber with extended inlet/outlet;
l=28�23 cm, l1=8�0 cm, l2=4�0 cm: ÐÐ , 2-D analytical; *, experimental; ± ± ± , BEM; � � � � � � ,
1-D analytical; ± � ± � ± , 1-D analytical (with end correction).
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The lengths of extended ducts may be chosen such that the resonances are
located at zero-attenuation frequencies of expansion chambers (the troughs, for
example, for an expansion chamber with no extensions and l=28�23 cm, are
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Figure 5. Transmission loss of concentric expansion chamber with extended inlet/outlet;
l=40�84 cm, l1=8�0 cm, l2=0 cm: ÐÐ , 2-D analytical; *, experimental; ± ± ± , BEM; � � � � � � ,
1-D analytical.
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Figure 6. Transmission loss of concentric expansion chamber with extended inlet/outlet;
l=28�23 cm, l1=12�0 cm, l2=0 cm: ÐÐ , 2-D analytical; *, experimental; ± ± ± , BEM; � � � � � � ,
1-D analytical.
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located at 618, 1236, 1854 and 2471 Hz; the speed of sound is 346�1 m/s which is
also used in the computational study) leading to a desirable high acoustic
attenuation as illustrated in Figure 7 (l1=13�1 cm, l2=6�1 cm). The length l1 is
chosen to match the ®rst trough at 618 Hz and l2 the second one at 1236 Hz.
This behavior demonstrates the bene®t of the extended inlet and outlet ducts in
the muf¯er design.
Figures 2±7 compare the transmission loss results from the analytical,

computational and experimental approaches. The present analytical approach
and the BEM yield nearly identical results throughout the frequency range of
interest, and both also agree, in general, with the experimental results. Some
deviation from experimental results is observed, for example, near the resonance
peak of the shorter extension con®guration of Figure 3, and near the resonances
of Figure 7. These minor discrepancies are currently being assessed in relation to
the neglected viscous effects and the wall thickness of extended ducts in the
analytical and computational approaches, and minor geometrical imperfections
in the experimental set-up (for example, the slight deviation of the extended
ducts from circular cross-section).
Also included in Figures 2±7 are the predictions from equation (26) of simple

one-dimensional (1-D) theory. In general, no end correction is used for the ducts
in the 1-D approach, with the exception of Figures 4 and 8. The plane wave cut-
off frequency of the hollow chamber (see chamber C in Figure 1) is lower than
that of an annular chamber (chambers B and D), as illustrated in Table 1. Thus,
the cut-off frequency of the hollow chamber determines the region of
approximate one-dimensional propagation. When the frequency is higher than
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Figure 7. Transmission loss of concentric expansion chamber with extended inlet/outlet;
l=28�23 cm, l1=13�1 cm, l2=6�1 cm: ÐÐ , 2-D analytical; *, experimental; ± ± ± , BEM;
� � � � � � , 1-D analytical.
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the plane wave cut-off frequency of the hollow chamber, the higher order
modes are excited, resulting in a dramatic reduction in the acoustic attenuation
of expansion chambers with extended ducts, as illustrated in Figures 2±7
beyond the ®rst radial mode (0, 1). Below the plane wave cut-off frequency, the
simple 1-D approach may be useful for an approximate estimation of the ®rst
resonant peaks for longer duct extensions at relatively low frequencies. The
uncorrected 1-D approach misses, however, speci®cally the resonant peaks of
shorter extensions (see Figure 3), and, in general, higher frequency resonances
(see Figures 6 and 7). Clearly, for shorter extensions, the end correction such as
[1] Dl1,2=0�6a1,2=1�458 cm becomes rather signi®cant. Applying such
correction to both extensions of Figure 4, for example, improves the ability of
the 1-D approach to predict resonances below the cut-off frequency.
Similar to the simple expansion chamber without extensions [5], the offset

inlet/outlet will excite higher order asymmetric modes and can signi®cantly affect
the acoustic attenuation of expansion chambers with extended inlet/outlet. In
Figures 8 and 9, the boundary element predictions, as well as the experimental
results, are depicted for the expansion chambers with offset extended inlet/outlet
of 180� and 90� apart, respectively. For the 180� offset inlet/outlet, the effective
acoustic attenuation region is observed until the ®rst diametral (1, 0) mode. For
illustrative purposes, 1-D results without and with end correction Dl1,2=0�6a1,2
are also included in Figure 8. While the end correction helps improve the ®rst
order estimate of resonance locations below (1, 0) mode, the 1-D approach
including end correction clearly fails above the (1, 0) mode, where the
multidimensional approach such as the one presented in this work should be
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Figure 8. Transmission loss of asymmetric expansion chamber with extended inlet/outlet;
l=28�23 cm, l1=8�0 cm, l2=4�0 cm, 5�1 cm offset inlet, 5�1 cm offset outlet, 180� separation:
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employed. The detrimental effect of the diametral mode could partially be
eliminated by placing the inlet and outlet 90� apart. The results are shown in
Figure 9, which exhibit increased transmission loss over the 180� case,
particularly in the frequency range between the (1, 0) and (2, 0) modes. The
relative behavior of the concentric, 180� offset, and 90� offset extended inlet/
outlet con®gurations may best be illustrated by combining the boundary element
results from Figures 4, 8 and 9 in Figure 10.

5. CONCLUDING REMARKS

A two-dimensional analytical approach is presented for the prediction of the
acoustic attenuation performance of circular concentric expansion chambers
with extended inlet/outlet, and compared with the boundary element predictions
and experiments. The effect of the lengths of extended ducts and expansion
chambers are investigated analytically, numerically and experimentally for the
concentric con®gurations. The expansion chambers with extended inlet/outlet
exhibit the combination of the broadband domes and the resonant peaks below
the cut-off frequency of the ®rst excited higher order mode of the hollow
chamber. The number of domes is the same as the simple expansion chambers
and increases as the length of the chamber increases. The number of resonant
peaks increases and the resonant frequencies decrease as the length of the
extended ducts are increased. By choosing the length of extended ducts to match
the resonances with the zero-attenuation frequencies of expansion chambers an
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Figure 9. Transmission loss of asymmetric expansion chamber with extended inlet/outlet;
l=28�23 cm, l1=8�0 cm, l2=4�0 cm, 5�1 cm offset inlet, 5�1 cm offset outlet, 90� separation: *,
experimental; ÐÐ , BEM; � � � � � � , 1-D analytical.
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excellent acoustic attenuation may be obtained. This behavior demonstrates the
advantage of the extended inlet and outlet in the muf¯er design.
The boundary element predictions and the experimental results for the

asymmetric con®gurations show that the effective acoustic attenuation frequency
band is observed until the ®rst diametral (1, 0) mode for the 180� offset inlet/
outlet, and placing the inlet and outlet 90� apart can improve transmission
loss over the 180� case, particularly in the frequency range between the (1, 0)
and (2, 0) modes. The accuracy and the bounds of applicability of the 1-D
approach with and without end correction are also assessed in comparison with
multidimensional techniques at low as well as high frequencies.
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APPENDIX A: INTEGRALS IN EQUATIONS (13)±(15) AND (22)±(24)

The integral relations [20] for Bessel function Bn(x) of any kind and order n
give

�
rB0�lr�B0�mr� dr �

r

l2 ÿ m2
flB1�lr�B0�mr� ÿ mB0�lr�B1�mr�g, �l 6� m�,

r2

2
fB2

0�lr� � B2
1�lr�g, �l � m�:

8>><>>:
�A1�
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The integrals in equations (13)±(15) and (22)±(24) may then be evaluated as

hCA, sCA, siA � a21J
2
0�as�, �A2�

hCB, sCB, siB � a2C2
B, s�a� ÿ a21C

2
B, s�a1�, �A3�

hCC, sCC, siC � a2J20�as�, �A4�

hCD, sCD, siD � a2C2
D, s�a� ÿ a22C

2
D, s�a2�, �A5�

hCE, sCE, siE � a22J
2
0�as�, �A6�

hCC, nCA, siA �
2ana1=aJ0�as�J1�ana1=a�
�an=a�2 ÿ �as=a1�2

�an=a 6� as=a1�

a21J
2
0�as� �an=a � as=a1�

,

8><>: �A7�

hCC, nCB, siB �
2ana1=aJ1�ana1=a�CB, s�a1�

�bs=a�2 ÿ �an=a�2
�an 6� bs�

a2CC, n�a�CB, s�a� ÿ a21CC, n�a1�CB, s�a1� �an � bs�
,

8><>: �A8�

hCC, nCD, siD �
2ana2=aJ1�ana2=a�CD, s�a2�

�gs=a�2 ÿ �an=a�2
�an 6� gs�

a2CC, n�a�CD, s�a� ÿ a22CC, n�a2�CD, s�a2� �an � gs�
,

8><>: �A9�

hCC, nCE, siE �
2ana2=aJ0�as�J1�ana2=a�
�an=a�2 ÿ �as=a2�2

�an=a 6� as=a2�

a22J
2
0�as� �an=a � as=a2�

:

8><>: �A10�

APPENDIX B: NOMENCLATURE

An, Bn, Cn, Dn, En modal amplitudes in regions A, B, C, D, E (see Figure 1)

a, a1, a2 radii of expansion chamber, inlet, and outlet ducts

J0, J1 Bessel functions of the ®rst kind of order 0 and 1

kA,n =[k2ÿ (an/a1)2]1/2, axial wavenumber in region A

kB,n =[k2ÿ (bn/a)2]1/2, axial wavenumber in region B

kC,n =[k2ÿ (an/a)2]1/2, axial wavenumber in region C

kD,n =[k2ÿ (gn/a)2]1/2, axial wavenumber in region D

kE,n =[k2ÿ (an/a2)2]1/2, axial wavenumber in region E

l, l1, l2 length of expansion chamber, extended inlet, and outlet ducts

n mode number
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P acoustic pressure

q number of terms after truncation

s orthogonal expansion terms

SA, SB, SC, SD, SE cross-sectional areas of regions A, B, C, D, E

U particle velocity

Y0, Y1 Bessel functions of the second kind of order 0 and 1

an zeros of J1(an)=0 (hollow duct C)

bn zeros of J1(bna1/a)ÿ [J1(bn)/Y1(bn)]Y1(bna1/a)=0 (annular duct B)

gn zeros of J1(gna2/a)ÿ [J1(gn)/Y1(gn)]Y1(gna2/a)=0 (annular duct D)

CA,n(r) =J0(anr/a1), for region A

CB,n(r) =J0(bnr/a)ÿ [J1(bn)/Y1(bn)]Y0(bnr/a), for region B

CC,n(r) =J0(anr/a), for region C

CD,n(r) =J0(gnr/a)ÿ [J1(gn)/Y1(gn)]Y0(gnr/a), for region D

CE,n(r) =J0(anr/a2), for region E

Dl1, Dl2 end corrections for the extended inlet/outlet ducts
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