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Nonequilibrium Thermodynamics Laboratory: 
Research Fields

• Kinetics of low-temperature plasmas and high-speed nonequilibrium flows

• Molecular energy transfer, nonequilibrium chemical reactions

• Laser diagnostics of plasmas and reacting flows

• Development of new molecular gas lasers

• Applications for plasma chemical reactors, propulsion and combustion, 
high-speed aerodynamics, hypersonic flows, and biology



Excited Species and Radicals in Reacting Plasmas: 
Outstanding Challenges

• Energy partition in nonequilibrium plasmas controlled by reduced electric field (E/N):

 Vibrational excitation at low E/N

 Electronic excitation and molecular dissociation at high E/N

• Excited species and radicals enable low-temperature reaction pathways in reacting 
flows: plasma-assisted combustion, plasma-assisted catalysis

• Isolating and quantifying the effect of excited electronic species, reactive radicals, and 
vibrationally excited molecules remains an open question

 H2-O2 combustion: H and O atoms vs. H2(X1Σ,v) and O2(a1∆)

 NH3 and NOx synthesis: electronically excited N2*, O2* vs. H2(v), N2(v)

 CO2 dissociation: via electronic or vibrational excitation?

 CH4 / CO2 conversion into CO / H2

 Selective generation of excited species and radicals, isolating their effect is challenging



Plasma Catalytic Synthesis of NH3:
Reaction Pathways

• Process dominated by surface reactions of 
N and H (generated by electron impact)

J. Shah et al, ACS Appl. Energy Mater. 2018

• Vibrational excitation of N2 reduces 
barrier for surface dissociation reaction (?)

P. Mehta et al., Nature Catalysis 2018

N  / H or N2(v)? It is difficult to generate them independently



Air Plasma Chemistry: 
Low and High E/N Reaction Pathways

NO formation: 𝑵𝑵𝟐𝟐 𝑨𝑨𝟑𝟑𝜮𝜮, … + 𝑶𝑶 → 𝑵𝑵𝑵𝑵 + 𝑵𝑵

N2 vibrational excitation:

𝑵𝑵𝟐𝟐 𝑨𝑨𝟑𝟑𝜮𝜮 + 𝑶𝑶𝟐𝟐 → 𝑵𝑵𝟐𝟐 𝑿𝑿𝟏𝟏𝜮𝜮 + 𝑶𝑶 + 𝑶𝑶O atom generation:

𝑵𝑵𝟐𝟐 𝑿𝑿𝟏𝟏𝜮𝜮 + 𝒆𝒆 → 𝑵𝑵𝟐𝟐 𝑨𝑨𝟑𝟑𝜮𝜮, … + 𝒆𝒆
𝑵𝑵𝟐𝟐 𝑿𝑿𝟏𝟏𝜮𝜮 + 𝒆𝒆 → 𝑵𝑵 + 𝑵𝑵 + 𝒆𝒆

𝑵𝑵𝟐𝟐 𝒗𝒗 = 𝟎𝟎 + 𝒆𝒆 → 𝑵𝑵𝟐𝟐 𝒗𝒗 > 𝟎𝟎 + 𝒆𝒆

N2 electronic excitation:
N2 dissociation:

Shkurenkov et al, PSST, 2014Burnette et al, PSST, 2014

1 cm
High E/N

Low E/N

Current

Air, 100 Torr



“Hybrid” Plasmas: How Do They Work?

• Non-self-sustained (”hybrid”) discharges: separate waveforms for ionization and 
main energy loading
 Ionization and energy addition are uncoupled
 Stable at high pressures and discharge powers
 Previously used for efficient molecular lasers (CO2, CO, COIL)

• External ionization sources:
 High-energy electron beam (challenging in operation)
 High-voltage, ns duration pulses (most popular approach)

• Main energy loading waveforms:
 DC: may need separate electrodes, cathode layer unstable at high pressures
 RF: electrodes external to reactor, heating electrons by drift oscillations

• Can hybrid plasmas be used for selective generation of excited species and radicals, 
using two separate waveforms (e.g. ns pulses and RF voltage)?



Wind tunnel parameters:

• Plenum pressure 0.5-1.0 atm

• Mach 5 flow in test section

• Steady-state run time 5-10 s
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Background: Ns Pulse / DC Hybrid Plasma 
Mach 5 Nonequilibrium Plasma Wind Tunnel

Sustaining nonequilibrium flow:

• Ns pulse train / DC discharge in plenum

• Total power loading up to 3 kW

Nishihara et al, AIAA J., 2012
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Ns pulse / DC discharge in plenum

• Plasma does not fully decay between ns pulses
• Stable plasma at 0.5 atm, up to 3 kW DC power

Ns pulse discharge alone
N2, P=350 torr,  ν=100 kHz

Ns pulse / DC discharge
N2, P=350 torr,  ν=100 kHz, UDC = 2 kV

Ns pulse voltage
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CARS Measurements of T, Tv(N2) in the Plasma

• Nitrogen, P = 300 Torr

• Strong vibrational nonequilibrium: Tv(N2) ≈ 2000 K, Trot/trans = 450 K

• Less nonequilibrium when CO2 is added: V-V energy transfer from N2 to CO2

• Similar results in N2-H2, N2-O2, N2-NO, and N2-CO2 mixtures

Montello et al, AIAA J., 2013

v=0

v=1



Tv(N2) →

Trot →

Montello et al, AIAA J., 2013

T and Tv(N2) in Different Gas Mixtures

• Baseline: P= 300 Torr, Tv(N2) ≈ 2000 K, Trot/trans = 450 K

• Significant vibrational relaxation produced by adding relaxer species

• Application: effect of accelerated vibrational relaxation on supersonic flow



Ns pulse / DC Discharge Limitation:
Diffuse plasma always becomes unstable at high DC voltages

• Cathode layer is always self-sustained

• Increasing DC voltage leads to cathode 
layer ionization instability

Ns pulse / DC discharge
N2, P=350 torr,  ν=100 kHz, UDC = 2 kV

Ns pulse / DC discharge
N2, P=350 torr,  ν=100 kHz, UDC = 3.5 kV
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N2, P=300 torr,  ν=100 kHz, UDC = 3 kV

Ns pulse / DC discharge
N2, P=300 torr,  ν=100 kHz, UDC = 4 kV



Present Approach: Ns Pulse / RF Hybrid Plasma

• Single pair of electrodes, external  to the reactor

• Alternating pulse polarity (not critical)

• Ns pulses and RF bursts  are separated in time

• RF voltage induces drift oscillations of electrons 
generated by the pulses

• RF plasma remains stable



Discharge Waveforms 
and Plasma Emission Images

• Diffuse plasma during entire burst, after pulse #1

• RF-induced electron drift oscillations improve 
plasma uniformity

• Similar observations in N2 and H2-N2,                    
up to P=1 atm and ν=100 kHz

Pulse voltage and current

Ns pulse / RF voltage waveforms



Can Both Waveforms in a Hybrid Plasma
Generate Desired Species Selectively?

• High peak E/N ns pulses:

 Sustain ionization and

 Generate electronically excited species, e.g. N2(A3Σu
+), and atoms (N, H, O)

• Quasi-steady-state, low E/N waveform:

 Generate vibrationally excited molecules, e.g. N2(v), H2(v), CO(v), CO2(v1,v2,v3)

• Goal: isolate and quantify the effect of atoms / radicals and vibrationally excited 
species on plasma assisted chemistry and catalysis

• Goal: develop energy-efficient plasma chemical syntheses at atmospheric pressure



Diagnostics 

CARS: T, Tv(N2), N2(v)

TDLAS, CRDS: T, N2(A3Σ)

FTIR emission: T, Tv(CO), CO(v)



Ns Pulse Discharge Alone in Nitrogen:
Generation of N2(A3Σu

+) and N atoms by Electron Impact

• TDLAS scan with several N2(A,v=0) 
absorption lines

• Absorption sensitivity 10-4 cm-1, T=320±10 K
• Time-resolved N2(A,v=0) populations 

with and without RF (first 50 pulses)

Accumulation 
of N atoms

• Nitrogen, P=100 Torr, pulse repetition rate 10 kHz

• Almost no effect of RF voltage on N2(A) number density, as expected (E/N is low)

• N2(A) decay due to quenching by N atoms, N2(A) + N → N2(X) + N

• Time-resolved N2(A,v=0) populations 
with and without RF (300 pulses)

Accumulation 
of N atoms



• 1% H2 – N2, P=100 Torr, pulse repetition rate 10 kHz

• Peak N2(A) is lower, decay between the pulses: rapid quenching by N and H atoms, 
N2(A) + N → N2(X) + N,   N2(A) + H → N2(X) + H

• Indication of H atom generation by electron impact

Ns Pulse Discharge Alone in H2-N2:
Generation of N2(A3Σu

+), N, and H Atoms



Ns Pulse / RF Discharge in Nitrogen:
Strong N2 Vibrational Nonequilibrium

• Animation CARS spectra

• Nitrogen, P=100 Torr

• Pulse repetition rate 10 kHz

• 300-pulse ns / RF bursts (30 ms on, 70 ms off)

v=0

v=1

v=2
• End of the burst: Tv=1900 K, T=380 K 

• Ns and RF: selective generation of excited species



Ns Pulse / RF Discharge in N2, H2-N2:
Vibrational Excitation and Relaxation

Ns / RF on Off

v=0

v=1

v=2

• N2 and 1% H2 – N2, P=100 Torr

• T, Tv(N2) during ns pulse / RF burst and the afterglow

• Strong vibrational nonequilibrium, relaxation over tens of ms

• Sufficient time for transport to porous catalyst downstream of the plasma



Ns Pulse / RF Discharge in CO – N2:
Vibrational Excitation of Other Species
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• Strong CO vibrational nonequilibrium, inferred from best fit synthetic spectra

• 1% CO – N2 mixture, P=50 Torr, 5 kHz ns pulse / RF discharge

CO vibrational distribution: 
T = 500 K, Tv=3100 K
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Ns Pulse / RF Discharge in CO2 – N2:
Vibrationally Enhanced Plasma Chemistry

In situ FTIR emission spectra, CO and CO2 : ns discharge with RF voltage OFF and ON

• 0.1% CO2 – N2 mixture, P=60 Torr, 2.5 kHz ns pulse / RF discharge

• Strong CO and CO2 vibrational nonequilibrium: Tv(CO) = 2400 K, T = 580 K
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Ex situ FTIR absorption spectra, CO product: ns discharge with RF voltage OFF and ON

• 0.1% CO2 – N2 mixture, P=60 Torr, 2.5 kHz ns pulse / RF discharge

• Significant increase of CO number density due to vibrationally stimulated chemistry
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Ns Pulse / RF Discharge in CO2 – N2:
Vibrationally Enhanced Plasma Chemistry (cont.)



Summary

• Hybrid plasmas (ns pulse / DC and ns / pulse RF): stable, diffuse, pressure
and volume scalable

• Ns pulse / RF plasmas: no catalytic effect of the electrodes, non-self-sustained
in the entire volume

• Selective generation of

 Electronically excited molecules and atomic species (ns pulse discharge)

 Vibrationally excited molecules in ground electronic state (RF discharge)

• Demonstrated in nitrogen, H2-N2, CO-N2, and CO2-N2 mixtures

• Potential of isolating the effect of atomic species, radicals, and vibrationally
excited molecules on plasma-induced chemistry and plasma-assisted catalysis



Ongoing and Future Work

• Operate ns pulse discharge at higher peak voltage and pulse repetition rate

 Enhance vibrational nonequilibrium

 Extend to reacting mixtures containing rapid V-T relaxers (e.g. CO2, CH4)

• Measure H2(v) (CARS); N, H, and O (TALIF); CO2(v1,v2,v3) (mid-IR DLAS)

• Isolate and quantify the effect of atomic species and radicals (ns pulse
discharge), and vibrationally excited molecules (RF discharge):

 Hydrogen combustion

 Plasma chemical and plasma-catalytic dry methane conversion

 Plasma chemical and plasma-catalytic ammonia synthesis



• DOE Collaborative Research Center for Studies of Plasma-Assisted Combustion
and Plasma Catalysis (2019 – 2024)

• AFOSR “Energy Transfer Processes in Nonequilibrium Hypersonic Flows” (2017 –
2020)

• NSF “Fundamental Studies of Accelerated Low Temperature Combustion Kinetics
by Nonequilibrium Plasmas” (2016-2020)

• DOE PSAAP-2 Center “Exascale Simulation of Plasma-Coupled Combustion”
(2014-2020)

• AFOSR “Nonequilibrium Molecular Energy Coupling and Conversion Mechanisms
for Efficient Control of High-Speed Flow Fields” (2012 – 2015)

• DOE Plasma Science Center “Predictive Control of Plasma Kinetics: Multi-Phase
and Bounded Systems” (2009-2019)
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