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OHIO| Nonequilibrium Thermodynamics Laboratory:
SIAIE Research Fields

* Kinetics of high-speed nonequilibrium flows and low-temperature
plasmas

* Energy transfer in molecular collisions, nonequilibrium chemical
reactions, emission and absorption of radiation

* Laser diagnostics of plasmas and reacting flows
* Development of new molecular gas lasers

* Applications for high-speed aerodynamics, propulsion and
combustion, hypersonic flows, plasma chemical reactors, and biology



b}HH(S Nonequilibrium Reacting Plasmas:
SIAIE Relevance for Aerospace Applications

* High-speed flow (formation of coherent structures) is affected by localized heating
in pulsed plasmas: plasma flow control

* Excited species and radicals enable low-temperature reaction pathways
in reacting flows: plasma-assisted combustion

* Excited species and radicals control UV / visible emission from nonequlibrium flows:
hypersonic flight, atmospheric reentry

* Energy partition in the plasma (vibrational and electronic excitation, dissociation,
radical generation), and temperature rise are controlled by the electric field

* Quantitative insight requires non-intrusive diagnostics of electric field, excited
species, and radicals:

* In laboratory environments

* At pulsed high-enthalpy flow facilities
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Electric Field in Pulsed Plasmas:

Understanding High-Speed Plasma Flow Control



OSDHAJEIO Energy Partition in Air Plasma vs. Electric Field
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Yu. Raizer, Gas Discharge Physics, Springer,
1991

Quasi-steady-state discharges: low E/N
(4) N, vibrational excitation:
Low reactivity, slow thermalization

Energy fraction

L0

l'lli ) —flll |

Pulsed discharges: high E/N
(5,6) N,, O, electronic excitation, dissociation,
High reactivity, rapid thermalization

0.5

Reduced electric field

* E/N controls species generated in the plasma
and the rate of temperature rise
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Effect of Excited Species on Temperature Rise:

Ns Pulse Discharge in Air, 100 Torr
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“Slow” heating: V-T relaxation, N,(v) + O — N,(v-1) + O

T, rise: V-V exchange, N,(v) + N,(v=0) — N,(v-1) + N,(v=1)

e Formation of coherent structures in the flow

“Rapid” heating: quenching of N, electronic states, N,*+ 0, - N, + O+ O

Shkurenkov et al, PSST, 2016




OHiO| Localized Arc Filament Plasma Flow Actuators

W M=0.9 Circular Jet

Yy

First helical mode

* High amplitude perturbations (localized heating in arc filaments)

* Every discharge pulse results in a vortex formation
* Flow responds to forcing near instability frequency

* Mixing enhancement, jet noise reduction

Kim et al, Expts. Fluids, 2010
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Ns Pulse Surface Plasma Flow Actuators:
Boundary Layer Reattachment (M=0.2-0.3)

Flow | > _ _ _ _ -10
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* Every ns discharge pulse produces * D_";
a spanwise “vortex tube” D4 i 5

* Enhanced mixing with free stream,
boundary layer reattachment

* Effect detected up to u=96 m/s
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Little et al, AIAA J., 2012




OHIO| Surface Plasma / CFD Modeling Predictions
SIAIE Baseline and forced flows
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* Vortex formation controlled by localized heating in plasma layer

* Need to know time-resolved electric field, E£(2), to predict flow field accurately

Zheng et al, Phys. Rev. Fluids, 2016




OHIO| Electric Field Induced Second Harmonic Generation
SIALE (E-FISH)

Electric field in the plasma, E, induces a dipole moment in molecules or atoms
* Pulsed laser beam (fs, ps, or even ns) passes through the plasma

 Laser field, I, generates coherent oscillating polarization of the dipoles

2
* Oscillating dipoles launch a coherent 2" harmonic signal beam, I,, ~ [ x31,E L]
(¥ — nonlinear susceptibility, L — interaction length)

* Straightforward signal isolation and detection, sub-ns time resolution
* Signal polarization same as field direction: E,, E, can be measured separately

* Simplest experiment ever, great for a student laser diagnostics lab

* Goal: determine effect of discharge pulse waveform on the flow field

Dogariu et al, Phys. Rev. Applied, 2017 Goldberg et al, Appl. Phys. Lett, 2018
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Electric Field
In Ns Pulse Surface Plasma Actuator

High voltage electrode

Dielectric

Laser beam
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Field offset: surface charge accumulation from previous discharge pulse
Field rises with applied voltage, drops after breakdown (plasma self-shielding)

E(t)/N controls temperature rise, vortex formation in the flow

Simeni Simeni et al., PSST, 2018




OHIO Electric Field
SIAIE! In H, Diffusion Flame with Ns Pulse Discharge
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* Electric field measured in H, plasma at T=370 K

* Energy coupled at £ =9-19 kV/em (E/N = 50-100 Td): efficient H atom generation

* E/N(1) is critical for quantifying effect of plasma on combustion

Simeni Simeni et al., Comb. Flame, 2018

Simeni Simeni et al., Comb. Flame, 2019
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“Dark” Metastable Species in Hypersonic Flows:

Understanding UV Radiation Mechanism



SE{Q UV Emission from Strong Shock Waves in Air
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NO(A%Z), 10! cm?3
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* Shock tube data, modeling (CUBRC, 1991):
NO UV radiation controlled by energy transfer 00

from N,(A3Y)

t, Us

N,+ N —> N,(43%) + N
N,(A32) + NO > N, + NO(A2%)
NO(A%?X) > NO + hv (y bands)

NO UV emission, Mach 11
normal shock in air

* No one ever detected N,(A%Y) in a hypersonic flow — it is a “dark” metastable state

* Goal: diagnostics of “dark” states such as N,(A3X) and O,(a'A) at high-enthalpy
test facilities, isolate UV radiation and O, dissociation mechanisms



OHIO How to Measure Species
That Do Not Want to Be Detected
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—— Synthetic Specirum
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8}2{1% Nonequilibrim Flow Mach 5 Wind Tunnel
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Optical Access Discharge Cavity Ringdown
Electrodes

W|ndow Mirrﬂ‘rs

1 Optical Access
Flow Window

* Blowdown wind tunnel, P,= 0.3 — 1.0 atm, Mach 4 — S5, run rime 10 s
* N,(A) generated by discharge in plenum
* Measurements by TDLAS (in plenum) and CRDS (in supersonic flow)
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TDLAS Measurements in Plenum

Ns pulse discharge
I electrodes

CW Laser

Flow into the page

| Ceramic plates
Laser T
beam — Discharge

Photodetector

N,(A) generated in a repetitive ns pulse discharge

Diffuse, uniform plasma fills entire flow cross section

Laser is scanned across absorption line or “parked” at the line center

Same approach can be used in a shock tube (O atom measurements at Stanford,
laser scan takes 1-2 ps)
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TDLAS Measurements in Plenum

* Nitrogen, P,= 250 Torr, T,= 320 K, discharge pulse rep rate v=100 kHz, 100 pulse burst

5x10" - -
; Experimental — ] | 10-2
2.0x107 1 — Synthetic “ 13 i
. £ 4x10"” - 3
g i . —8x10
1.5x10° f . Accumulation | 2
#0] —
= ¢ 3x10 of N atoms | o107 &
= ) - X -
= 107 - - 3
S S 2x10" - 32
"g —4x107 <
5.0x10™ Z 5 I
10 = -2x107
00 I
' ' ' ' O“%r———T 7177717 71710
771.41 771.41? 7'1711.42 771.425 0 150 300 450 600 750 900 1050
\% t .
avelength (nm) Time (us)

* N,(A) generated by electron impact: N, + e — N,(43%,B3X,C3II) + e —» N,(A43X) +e

* Quenching dominated by N atoms: N,(432) + N> N, + N

* Behind the shock, excitation of N, by N atoms is the dominant N,(A) generation process




OHIO| CRDS Measurements in a Supersonic Flow:
SIALE Can It Be Done?

Velocity in a Mach 4 test section, Relative intensity
CFD predictions (flow into the page) el
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Next, turn on discharge bursts in plenum: 4

Discharge Laser
Burst Pulse
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* N,, P,=250 Torr, P=1.1 Torr (M = 4.3)

* v=100 kHz discharge at the nozzle throat

* 50 single-shot CRDS traces
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Hybrid Plasmas:
Understanding Plasma Chemistry

and Plasma Catalysis Mechanisms
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* Separate waveforms for ionization and main energy loading
= Jonization and energy addition are uncoupled, stable plasmas at high pressures

=  Previously used for efficient molecular lasers (CO,, CO, e-COIL)

* High peak E/N ns pulses:
= Sustain ionization

= Generate electronically excited species, e.g. N,(A3X *), and atoms (N, H, O)

* Main energy loading waveform (DC or RF):

= Generate vibrationally excited molecules, e.g. N,(v), H,(v), CO(v), CO,(Vv{,V,,V3)

* Goal: isolate the effect of atoms / radicals and vibrationally excited species on
plasma chemistry and plasma catalysis

* Goal: develop efficient plasma chemical syntheses at atmospheric pressure
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Plasma Catalytic Synthesis of NH;:
Reaction Pathways

* Process dominated by surface reactions of
N and H (generated by electron impact)

J. Shah et al, ACS Appl. Energy Mater. 2018

energy

Potential

— (= 1

Reaction coordinate

Vibrational excitation of N, reduces
barrier for surface dissociation reaction (?)

P. Mehta et al., Nature Catalysis 2018

N /Hor N,(v)? Itis difficult to generate them independently




OSEHQJEIO NS Pulse / RF Hybrid Plasma
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Plastic casing
Side view Silicone rubber Front view

Copper electrodes
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\/\{\/\ * Single pair of electrodes,

external to the reactor
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electrons generated by the pulses
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OSDH,_\JEIO Discharge Waveforms and Plasma Images
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* 100 Torr N,, v=10 kHz, diffuse plasma during entire burst
* RF-induced electron oscillations improve plasma uniformity

* Similar behavior up to P=1 atm and v=100 kHz
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OHIO Ns Discharge:
% Generation of N,(A’X "), N, and H atoms
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[N,(A,v=0)] in 100 Torr of nitrogen,

with and without RF without RF

Almost no effect of RF voltage on [N,(A)]

Quenching by N atoms,
N,(A) + N — Ny(X) + N

« [N,(A,v=0,1)] in 100 Torr of 1% H,-N,,

* Rapid decay between the pulses

* Quenching by N and H atoms,
Ny(A)+H — Ny(X) + H



Ns / RF Discharge:
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SIAIL N, Vibrational Excitation
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Time elapsed: 0 ms

 Nitrogen, P=100 Torr, pulse rep rate 10 kHz i v=
0.8
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N
. . g 0.6
* Animation N, CARS spectra :
£
9 04 v=1
* Strong nonequilibrium: T,=1900 K, T=380 K 02| V=2 4‘_’/) L
* Ns and RF: selective generation of excited species G o0 w00 sa10 2390 2350
Raman Shift (cm'1)
120 . ns+BF, 300" pullse . . ns-on!y, 300thlpulse . .
— Experiment r
—CARSFT - 380 K ﬁ
100} ]
0.8}
80t g
3 gosef
& eof g
— 9‘:1':'. 04t Ty = 1900 K
40t —
0.2 L
20t
210 2315 5320 235 5330 S210 2280 2250 2270 2290 2310 2330 2350

. -1
Raman Shift (cm™) Raman Shift (cm™)



%ZI\IIO Summary

A
UNIVERSITY

* Electric field in pulsed plasmas: flow control via quenching of excited species,
localized heating, coherent structure formation

* Field measured in plasma flow actuators, H,-air plasmas (ps EFISH):
quantification of plasma flow control, plasma-assisted combustion

* N,(A3%X), “dark” species controlling NO UV emission behind shock waves:
measured in Mach 4-5 nonequlibrium flows (TDLAS and CRDS)

* TDLAS and CRDS: potential for N,(A3X) and O,(a'A) measurements in shock tubes
and shock tunnels, to understand NO UV radiation and O, dissociation

* Hybrid plasmas: selective generation of excited species and radicals, potential for
isolation of plasma chemistry and catalysis mechanisms

* N,(A) and N,(v): generated selectively and measured in hybrid ns / RF plasmas
(TDLAS, CARS). N, H, product species measurements are underway
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This Just In:

N,(A3X ) TDLAS in a Mach 5 Flow

N,, Py=250 Torr, P=1.1 Torr (M =

4.3)

Number Density (cm.3)
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v=100 kHz discharge at the nozzle throat, discharge burst 1 ms long

[NZ(A3Eu+9V=0)]

Results consistent with CRDS measurements at the same conditions

=1.7+0.1 -10' ¢cm?3,

T=66+*8K
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