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Previous state of the art
I. Lack of laboratory scale, long run time, multiple runs per day, 

nonequilibrium flow facilities
• Limits amount of flow characterization data, slows down development of diagnostics

II. Lack of non-intrusive, high frame rate, portable diagnostics of high-speed 
nonequilibrium flows

• Prevents spatially and time-resolved characterization of flow parameters, in 
particular state-specific measurements and kinetic model validation

III. Lack of predictive, physics-based, state-to-state molecular energy transfer 
rates and kinetic models

• Use of simplified semi-empirical models, lack of confidence in modeling predictions
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I. Development of a Nonequilibrium Flow 
Wind Tunnel

• Plenum pressure P0=0.5-1.0 bar, steady-state run time 5-10 s

• Strong vibrational nonequilibrium generated in plenum (T=500 K, Tv=2000 K)

• Nonequilibrium flow in test section, Mach number M=3-5

• Used for characterization of nonequilibrium flow field by laser diagnostics
• Ps CARS for T and Tv in plenum, Mach 5 free stream, and behind Mach 5 shock

• 10 kHz NO PLIF for 2-dimensional temperature distribution in nonequilibrium flow 
behind Mach 5 shock

• 500 kHz NO2 / NO MTV for velocity field in flow over Mach 5 shock
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Nonequilibrium Flow Wind Tunnel Schematic

Mach number distribution
US3D code (U. Minnesota)

• Plenum pressure P0 = 0.5-1.0 bar

• Steady-state run time 5-10 s, 
~100 runs a day

• Strong vibrational nonequilibrium
sustained by a diffuse electric 
discharge in plenum

• Interchangeable nozzle inserts, 
test section Mach number M=3-5

• Well characterized flow (US3D)

• Ample access for laser 
diagnostics



N2 vibrational CARS spectra in plenum
• N2(v=0-3) vibrational bands are detected
• Temperature inferred from rotational band structure
• TV = 2000 K, Trot = 450 K (nitrogen);
• TV = 800 K, Trot = 600 K (nitrogen with CO2 added)
• Strong vibrational nonequilibrum at steady state
• Varied by adding relaxers such as NO, H2, CO2

Nonequilibrium Flow Tunnel: Plenum Conditions
Plenum Top View
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N2 Flow

NO2 Injection

Mach 5 Nozzle

226 nm laser sheet

CylinderImage

355 nm tagging line
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Mach 5 Test Section: 
500 kHz Flow Tagging Velocimetry*

• “Tag” beam: NO2 + hν → NO + O (“painting” an invisible NO line in the flow), 355 nm
• “Interrogate” sheet: NO PLIF imaging (“lighting up” the invisible lines), 226 nm
• Inferring 2-D flow velocity field in shock layer. Free stream velocity v = 719±10 m/s

*Using OSU pulse burst laser
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Nonequilibrium Mach 5 Flow Characterization: 
Free Stream and Shock Layer

Vibrational Temperature: Ps CARSShock in Front of a 
Cylinder Model

Temperature distribution:
10 kHz NO PLIF (top), CFD (bottom)

• Trot, Tv distributions behind shock are measured
• “Frozen” flow behind Mach 5 bow shock: N2 vibrational relaxation very slow

Tmax = 500 K
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Injection flow: CO2

Pulser electrodes

DC electrodes

Main flow: N2

Optical access window

Static pressure port

θ

Expansion fan
Lip shock

Shear layer

To vacuum

Aerodynamic Control: Vibrational Relaxation 
Moves Nonequilibrium Mach 3 Shear Layer

CO2

N2

OFF
ON

• Higher static pressure: CO2 injection accelerates N2 vibrational relaxation

• This results in gas temperature and pressure rise, pushing shear layer up

• 2-D N2 vibrational temperature distribution measured in shear layer

• Effect observed only when N2 is vibrationally excited

• At T > Tv , effect would be reversed (vibrational relaxation would reduce T)

y, mm



Impact

• Robust, laboratory scale experimental platform for detailed studies of 
nonequilibrium hypersonic flows

• Essential for development and testing of laser diagnostics
• Straightforward generation of  nonequilibrium high-pressure flows
• Detailed characterization of nonequilibrium flow in plenum, free stream, 

and Mach 5 shock layer
• Effect of accelerated vibrational relaxation on Mach 3 shear layer is detected 

and quantified
• Effect may be observed behind oblique shocks, in base flows in hypersonic 

flight 
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Challenges
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• Effect of vibrational relaxation on high-speed flow field needs to be quantified 
at well characterized flow conditions, compared with nonequilibrium flow 
code predictions

• Time-accurate effect of vibrational relaxation on shock stand-off distance: high 
frame rate NO PLIF

• Development of high frame rate CARS (CARS data so far are obtained at 10 Hz)
• 10 Hz CARS limitation: although 10-100 laser shots used for 1-10 s wind tunnel 

run time, only one laser shot per run is used at short run time facilities
• Development of Cavity Ring Down Spectroscopy diagnostic, to measure “dark” 

states (non-radiating metastable species) in the flow, N2(A3Σ) and O2(a1Δ)
• These states are critical for quantifying UV emission behind the shock, O2

dissociation kinetics



II. Development of Laser Diagnostics 
of High-Speed Flows

• OSU pulse burst laser  / high frame rate flow imaging system
• Custom built Nd:YAG laser outputs “bursts” of 10-30 high energy, ns duration pulses at 

rep rate of up to 1 MHz (1 μs apart)

• Pulse energy ~100 mJ (@1064 nm) at 1 MHz to ~500 mJ at 10 kHz

• Tunable UV output generated by Optical Parametric Oscillator (OPO), in combination with 
sum frequency mixing

• Planar Laser Induced Fluorescence (PLIF) imaging captured with high frame rate cameras

• At OSU, used for 10 kHz NO PLIF and 500 kHz Molecular Tagging Velocimetry

 The laser is portable, traveled to take data at hypersonic flow facilities at NASA 
LaRC and CUBRC 
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Pulse Burst Laser  / Flow Imaging System

Low energy, 1064 nm fiber laser pulses undergo 5 
stages of amplification, frequency tripled to pump 

narrow linewidth OPO

Typical 1 MHz laser pulse trains

1064 nm (100 mJ/pulse) 226 nm for NO LIF (0.4 mJ/pulse)
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NO PLIF at NASA LaRC Mach 10 Wind Tunnel

• Multiple sets of 500 kHz NO PLIF imaging of a Mach 10 boundary
layer after a cylindrical trip, Re = 1.7 - 6.2 million / m

• Flow ranges from laminar to highly transitional, with instabilities
and corkscrew vortices identified

Re = 1.7·106 / m

Re = 6.2·106 / m
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NO PLIF at CUBRC 48” Shock Tunnel

• Free stream flow: nitrogen, Mach 9, run time 10 ms
• 10 kHz NO PLIF images of NO-seeded He jet injected into a model

supersonic combustor
• Data quantify jet penetration depth and mixing with the main flow

Supersonic 
combustor

Single frames

10-frame average



Impact
• OSU pulse-burst laser: portable diagnostics for high frame rate 

characterization of nonequilibrium flows (~10 data sets per ~1 ms run)

• Diagnostics development, “shake-down”, and testing made possible by 
using the OSU laboratory scale nonequilibrium flow wind tunnel

• 500 kHz imaging of Mach 10 laminar and transitional boundary layer at 
NASA LaRC

• 10 kHz imaging of injection into a model supersonic flow combustor at 
CUBRC

• 500 kHz Mach 5 flow velocimetry at OSU
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Challenges
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• Development of portable, high frame rate CARS diagnostics, using the 
OSU pulse burst laser combined with a broadband OPO

• All previous CARS data are obtained at 10 Hz, such that only a single 
laser shot per run can be used at short run time test facilities.

• Use of high frame rate CARS will increase rate of data acquisition by 
an order of magnitude (~10-20 data sets for each ~1 ms run)

• Major technical challenge: monitoring and quantifying shot-to-shot 
variation of the Stokes beam spectral profile. This is critical for 
quantitative high frame rate CARS measurements.

• Operating the OSU nonequilibrium wind tunnel and the existing 10 Hz 
CARS setup is essential for development of this diagnostic.



III. Development of Molecular Energy Transfer / 
Nonequilibrium Air Chemistry Models

• Forced Harmonic Oscillator – Coupled Rotation model: physics-based, state-specific, 
close-coupled vibrational-rotational-translational (V-R-T) rates

• Coupled R-T / V-T energy transfer is critical near molecular dissociation limit

• 3-D molecular collisions 

• Coupling among multiple vibrational levels, coupling between vibrational and 
rotational energy transfer

• Multi-quantum V-R-T rates predicted at high collision energies (temperatures)

• Good agreement with computer trajectory calculations for accurate potential energy 
surfaces

• Coordinated model development, experimental work, and validation in the same 
laboratory
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Comparison with Trajectory Calculations: 
PVRT(v, j0 → w, j) and PVT(v → w) for Nitrogen

Et = 105 cm-1

• Good agreement with 3-D computer trajectory calculations for an accurate potential energy surface
• Analytic rate expressions: straightforward incorporation into existing nonequilibrium NS and DSMC codes
• Physics-based, predictive analysis of energy transfer and nonequilibrium chemistry behind strong shocks 



Comparison with State-Specific Vibrational 
Energy Transfer Measurements in Air Plasma

• Pulsed air excitation in a diffuse filament, ~100 ns pulse discharge, P=100 Torr

• Experimental data: ps CARS (N2 vibrational level populations), ns LIF and TALIF (NO, O, N number densities)

• Good agreement between data and modeling predictions for time-resolved N2(v=0-8) vibrational level 
populations, vibrational temperature, gas temperature, and [N], [O], [NO]

1 cm

N2(v=0-8) populations Vibrational temperature
Gas temperature [N], [O], [NO] NO PLIF image



Impact

• Straightforward incorporation of the model into nonequilibrium flow codes 
(Candler 1997; Boyd and Josyula 2011; Levin 2012; Schwartzentruber 2014; 
Gimelshein and Wysong 2018)

• Physics-based analysis of energy transfer and nonequilibrium chemistry at 
strongly nonequilibrium conditions

• Straightforward analysis of the molecular Potential Energy Surface (PES) 
effect on the energy transfer rates

• Complementing higher-fidelity, accurate PES, adiabatic / nonadiabatic
trajectory calculations
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Challenges
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• High-fidelity, accurate PES, state-specific vibrational energy transfer 
and dissociation models have been developed recently (U. 
Minnesota, U. Michigan)

• Model validation data, specifically for state-specific dissociation rates, 
are scarce to nonexistent

• Need relevant experimental data obtained at well characterized 
conditions



Ongoing and Future Research - I
• What are the state-specific rates of O2 dissociation behind strong shocks 

(above M~6)? O2 dissociation drives high-temperature nonequilibrium air 
chemistry, UV and IR emission behind the shock

• How can recent high-fidelity predictions of these rates (Boyd et al. 2015) be 
validated? State-specific measurements of O2(v) and ground state O atoms 
in shock tubes are extremely challenging

• Approach: simultaneous time-resolved measurements of O atoms and 
O2(v) in recombining O atom - Ar buffer mixture, at well characterized 
conditions, obtaining dissociation rates from detailed balance:
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State-Specific Measurements 
of O atoms and O2(v) During Recombination

24

• O2-Ar excitation by a uniform ns pulse discharge burst (~100 pulses at 100 kHz), at P=0.5-1.0 atm, T0=500 K
• Complete dissociation of O2 by electron impact, partial pressure of O atoms ~ 1 Torr
• Time-resolved measurements of O atoms (ps TALIF) and O2(v) (ps LIF) during O + O recombination
• Comparison with modeling predictions, validating state of-the-art dissociation model (U. Michigan)

Side view

End view



Ongoing and Future Research - II
• What is the effect of metastable (“dark”) molecular states on UV radiation from 

strong shocks (M=8-11)?
• Modeling predictions: NO UV radiation (γ bands) is due to energy transfer from 

metastable excited nitrogen, N2(A3Σ) (Wurster 1991, Treanor 1993)
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• Approach: generate N2(A3Σ) in an electric 
discharge in wind tunnel plenum

NO UV emission behind a normal shock 
in air (us=3.86 km/s)

NO(A2Σ), 1010 cm-3

Laboratory time, μs

Model

Experiment
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N2(A3Σ) and NO measurements in Mach 5 Flow

• Generate N2(A3Σ) in uniform ns pulse discharge burst in wind tunnel plenum
• Seed the flow with NO (in plenum or in supersonic flow section)
• Measure N2(A) and NO(X) in a Mach 5 flow: CRDS, NO PLIF
• Image NO(A→X) UV emission (γ bands), quantify energy transfer from N2(A) to NO(A) 
• Generate data at well characterized flow conditions, compare with NO UV emission 

predictions by nonequilibrium flow codes

NO PLIF NO(A→X) emission

NO injected upstream 
from a cylinder model



Cavity Ring Down Spectroscopy Diagnostics 
for N2(A3Σ) Measurements in the Flow

• N2(A3Σ) generated in uniform nitrogen plasma in CRDS cavity by a ns pulse discharge burst

• Absorption of a laser pulse is measured in the cavity with 99.99% reflectivity mirrors

• Absorption path ~ 2 km, very high sensitivity N2(A,v=0-2) measurements after the burst

𝐼𝐼
𝐼𝐼𝑜𝑜

= exp −
𝑡𝑡
𝜏𝜏

[N2(A3Σ)] =
1

𝑐𝑐𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎
1
𝜏𝜏 −

1
𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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Results So Far: N2(A3Σ, v=0-2) in Nitrogen Plasma*

• N2(A3Σ) generated in uniform nitrogen plasma in CRDS cavity by a ns pulse discharge burst

• Absolute, time-resolved N2(A,v=0-2) after the burst measured by CRDS

• N2(A3Σ) decay time is very long (~ 1 ms), will survive from plenum to Mach 5 test section

• Measurements in Mach 5 CRDS cavity are underway *Rao Prize, 73rd International Symposium 
on Molecular Spectroscopy, 2018



Related Work Originated from these Projects
(supported by Lockheed Martin SkunkWorks)

• Development of a novel supersonic flow chemical laser for electrical power 
generation on board of a hypersonic air vehicle

• Ablation of carbon from a high-temperature surface in a hypersonic air flow
• Reaction of C vapor with O2 in the flow, generation of highly vibrationally excited CO
• Creating population inversion, coupling out power in a CO laser resonator
• CO lasers: scalable up to MW output power
• Electrical power generation by photovoltaic conversion of laser power

• Approach to demonstrate feasibility in the lab
• Carbon powder vaporized in a high temperature, inductively coupled plasma
• Carbon vapor injected into airflow, reacts with O2 in the flow: C + O2 → CO(v) + O
• Demonstrate population inversion in CO product
• Demonstrate laser action in a supersonic flow
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Generation of C Vapor and Vibrationally Excited CO 
for a Novel Chemical Laser

• Micron size carbon particles seeded in Ar vaporized in the plasma

• Carbon vapor injected into airflow, reacts with O2 in the flow: C + O2 → CO(v) + O

• CO product: total vibration population inversion, coupling out laser power is feasible
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Future WorkGoal: Demonstrate Lasing in a Supersonic Flow

• Generate carbon vapor in a high-temperature plasma, inject into airflow in plenum

• Carbon vapor reacts with O2 in the flow: C + O2 → CO(v) + O

• Couple laser power in transverse supersonic flow resonator

• Supersonic flow laser infrastructure available in the lab

Main 
air flow

Laser cavity Diffuser

C vapor injection

Carbon powder 

C vapor 
generator



SUMMARY
• Development, operation, and instrumentation of a nonequilibrium flow wind tunnel, quantification of 

effect of vibrational relaxation on high-speed flow field 
• Development of ps and ns CARS diagnostics to characterize vibrational nonequilibrium in the flow
• Development of pulse-burst laser / flow imaging system: portable diagnostics for high frame rate 

characterization of high-speed nonequilibrium flows

• Use of the pulse-burst laser for 500 kHz Mach 5 flow velocimetry at OSU, 500 kHz imaging of Mach 10 
transitional boundary layer at NASA LaRC, 10 kHz imaging of flow in a model supersonic combustor in 
the 48” tunnel at CUBRC

• Development of close-coupled, state-specific vibrational-rotational-translational (V-R-T) rates for 
nonequilibrium NS and DSMC flow codes; models used extensively in the field

• Coordinated development of kinetic models, relevant experimental work, and model validation

• On-going work: state-specific measurements of nonequilibrium molecular dissociation, for validation 
of recently developed high-fidelity models

• On-going work: state-specific measurements of energy transfer from “dark” molecular states on UV 
radiation behind strong shocks

• On-going related work (support by Lockheed Martin SkunkWorks): development of a novel supersonic 
flow chemical laser for electrical power generation on board of a hypersonic air vehicle 32
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