

#### AIAA Paper 2017-1339 AIAA Aerospace Sciences Meeting (SciTech 2017), 9-13 January 2017

# Thermal perturbations generated by near-surface electric discharges and mechanisms of their interaction with the airflow

I.V. Adamovich<sup>1</sup>, S.B. Leonov<sup>2</sup>, K. Frederickson<sup>1</sup>, J.G. Zheng<sup>3</sup>, Y.D. Cui<sup>3</sup>, and B.C. Khoo<sup>3</sup>

<sup>1</sup>Department of Mechanical and Aerospace Engineering, Ohio State University

<sup>2</sup> Department of Aerospace and Mechanical Engineering, University of Notre Dame

<sup>3</sup> Temasek Laboratories, National University of Singapore



#### **Outline**

- I. Background / Introduction
- II. Kinetics of energy transfer and thermal perturbations in surface and volumetric ns pulse discharges
- III. Effect of localized heating on formation of flow structures, implications for high-speed plasma flow control
- IV. Effect of accelerated vibrational relaxation on nonequilibrium flow field, implications for high-speed flow control
- V. Summary and future outlook



#### Plasma Flow Control Mechanisms and Challenges

#### I. EHD body force

• Coulomb force interaction in AC DBD discharges: neutral flow entrainment by ions. Low-speed boundary layer flow separation control.

#### **II. Repetitive Localized Heating**

- Localized arc filament plasma actuators (LAFPA): inducing flow instabilities. Effective at low actuator powers, up to M=0.9-2.0
- Ns pulse surface plasma actuators (NS-DBD): coherent structures formation, boundary layer reattachment in low-temperature, ns pulse plasmas (up to M=0.3)

#### Goal

High-speed flow control at low energy cost, over a wide range of flow geometries, Mach and Re numbers: boundary layer transition and separation, shock wave control, drag reduction, mixing enhancement



### Schlieren visualization of a NS-DBD plasma actuator operated in quiescent air





#### Schlieren visualization of a NS-DBD plasma actuator operated in quiescent air

Leonov et al, J. Phys. D: Appl. Phys., 2014



- Heating in the discharge: compression wave formation on μs time scale
- Residual heating: late small-scale random perturbations on  $\sim 0.1$ -1 ms time scale
- What are the kinetics involved? Which one is important for plasma flow control?



#### Temperature dynamics in volumetric ns pulse discharge filament in air (P=100 Torr)







t= 1-10 μs (frames are 1 μs apart)



Montello et al, J. Phys. D: Appl. Phys., 2012

Montello et al, J. Fluid Science and Technol., 2013



#### Energy transfer and temperature dynamics in discharge and afterglow in air are well understood





- $T_v$  rise in early afterglow: V-V exchange,  $N_2(v) + N_2(v=0) \rightarrow N_2(v-1) + N_2(v=1)$
- $T_v$  decay in late afterglow: V-T relaxation,  $N_2(v) + O \rightarrow N_2(v-1) + O$
- "Rapid" heating: quenching of  $N_2$  excited electronic states,  $N_2$ \* +  $O_2 \rightarrow N_2(X) + O + O$
- "Rapid" heating: pressure overshoot on centerline, compression wave formation
- "Slow" heating: V-T relaxation,  $N_2(X,v) + O \rightarrow N_2(X,v-1) + O$
- "Slow" heating: affecting "late" random perturbations"?



### Adding CO<sub>2</sub> (efficient V-T relaxer) to air: accelerating "slow" heating rate





#### **Mechanism of accelerated "slow" heating:**

- V-V energy exchange between  $N_2$  and  $CO_2(v_3)$  mode:  $N_2(v=1) + CO_2(000) \leftrightarrow N_2(v=0) + CO_2(001)$
- $CO_2$  energy re-distribution among vibrational modes:  $CO_2(001) + M \leftrightarrow CO_2(100,020,010) + M$
- V-T relaxation of bending mode:  $CO_2(010) + M \rightarrow CO_2(100) + M$
- Heating by accelerated vibrational relaxation may be used for nonequilibrium flow control



#### **Localized Arc Plasma Flow Actuators (LAPFA): Exciting instabilities in transonic and supersonic flows (M=0.9-2.0)**





- Circular nozzle, 1 inch diameter
- Arc filament discharge pulses, ~10 μs
- Multiple channels controlled by fast HV switches
- Independent control of frequency, phase, and duty cycle → excitation of different instability modes



# LAPFA: Formation of spanwise vortices in a M=0.9 circular jet







- High amplitude perturbations (localized heating in arc filaments)
- Every discharge pulse results in vortex formation
- Flow responds to forcing near jet column instability frequency



### Ns DBD plasma actuators: formation of coherent structures (spanwise vortices)



- Every nanosecond discharge pulse produces a spanwise vortex
- Qualitatively similar to LAFPA actuators
- Enhanced mixing with free stream → boundary layer reattachment
- Same effect detected up to u=96 m/sec (M=0.28, Re<sub>x</sub>~1.5 ·10<sup>6</sup>)





# Spanwise vortex dynamics: high-speed schlieren (Tohoku University, Japan)









- U = 20 m/s,  $AoA = 22^{\circ}$ , f = 3 kHz ( $\tau = 0.33 \text{ ms}$ )
- Compression waves are seen in 0.7 ms image only, others are "between the frames"
- No evidence of compression wave on flow structure (compare images at 0.6 ms and 0.7 ms)
- Every discharge pulse generates an individual vortex, all vortices appear to rotate clockwise
- Vortices #1 and #2 travel above the separation zone, all subsequent vortices follow the surface



#### PIV measurements and plasma / CFD modeling:

(National University of Singapore, AIAA Papers 2017-0712, 0715)

• Objective: obtain quantitative insight into the mechanism of plasma flow control



Baseline flow (without control): Re =  $0.05 \cdot 10^6$  (U $_{\infty}$  = 10 m/s), AoA =  $15^o$ 

Ns pulse surface ionization wave plasma / volumetric residual heating model (Takashima et al., Plasma Sources Sci. Technol. 2013)

**Coupled with 2-D compressible flow Navier-Stokes equations** 



### Are spanwise vortices formed by compression waves?



**Numerical schlieren images overlaid with streamlines:** 

Compression wave propagation through the external flow

$$Re = 0.05 \cdot 10^6 (10 \text{ m/s}), AoA = 15^o, U_p = 20 \text{ kV}, f = 0.15 \text{ kHz}, f = 1.2$$

Effect of compression wave on external flow is very weak



# Are spanwise vortices formed by residual heating?



Numerical schlieren images overlaid with streamlines:

Re = 
$$0.05 \cdot 10^6$$
 (10 m/s), AoA =  $15^\circ$ , U<sub>p</sub> = 20 kV, f =  $0.15$  kHz, f + =  $1.2$ 

Generation of a spanwise vortex by residual heating

after the first discharge pulse (via inviscid instability)



### **Experimental (PIV) data Baseline and forced flows, Re** = $0.05 \cdot 10^6$



Spanwise vortex formation, flow reattachment begins after the first discharge pulse



### Plasma / CFD predictions Baseline and forced flows, $Re = 1.2 \cdot 10^6$



Residual heating after every discharge pulse results in a spanwise vortex formation



#### Comparison between PIV data and CFD predictions: $Re = 0.05 \cdot 10^6$



Results compared after  $N_p = 1$ , 2, and 3 discharge pulses: good qualitative agreement



### Using accelerated relaxation of vibrational energy to control supersonic mixing / shear layer



- Plenum: overlapped ns pulse / DC sustainer discharge for vibrational loading of N<sub>2</sub>
- $P_0 = 300$  torr,  $T_V = 2000$ , T = 500 K, 2-D nozzle, top wall contoured, bottom wall plane
- Condition at nozzle exit: M = 2.5,  $P_{exit} = 15$  torr
- Subsonic flow below expansion corner: injection of N<sub>2</sub> or CO<sub>2</sub>
- Optical access for schlieren, CARS, and NO PLIF in subsonic and supersonic flows

Nishihara et al, AIAA Paper 2015-0577

Frederickson et al, Plasma Sources Sci. Technol., 2017



# Effect of vibrational relaxation of shear layer: $N_2 / N_2$ (left) vs. $N_2 / CO_2$ (right)





N<sub>2</sub> "bleeding" through backstep

CO<sub>2</sub> "bleeding" through backstep

- Time delay between frames 5 ms, t = 0-80 ms
- Ns pulse / DC discharge (2.3 kW) is turned on at t = 10-45 ms, to excite main  $N_2$  flow
- No perturbation of shear layer detected in  $N_2 / N_2$  flow
- In  $N_2$  /  $CO_2$  flow, shear layer expansion angle decreases, approaching  $\theta=0^\circ$
- No change observed if main N<sub>2</sub> flow is not excited

Nishihara et al, AIAA Paper 2015-0577



### **N**<sub>2</sub> Vibrational Temperature Distribution in Shear Layer



- Top flow: vibrationally excited  $N_2$ ,  $T_V=1900$  K, estimated  $T_{rot}=240$  K
- Bottom flow: CO<sub>2</sub> bleeding through backstep, static pressure 7 torr



- $CO_2$  bleeding reduces  $T_V(N_2)$ , increases  $T_{trans/rot}$  and static pressure
- Consistent with time-resolved measurements in ns pulse discharge in quiescent  $N_2$ - $CO_2$
- Static pressure increase pushes up shear / mixing layer

Nishihara et al, AIAA Paper 2016-1762

Frederickson et al, Plasma Sources Sci. Technol., 2017



#### Summary

- Surface and volumetric ns pulse discharges:
  - ➤ Rapid energy thermalization on sub-acoustic time scale, high-amplitude compression wave generation
  - Residual heating affected by slow energy thermalization dominated by vibrational relaxation
  - ➤ Kinetics of energy thermalization ("rapid" and "slow" heating) is well understood
  - > Dynamics of small-scale random perturbations, their potential for flow control remain uncertain
- NS-DBD surface plasma actuators
  - Compression waves have almost no effect on the external flow
  - Large-scale coherent flow structures (spanwise vortices) are formed by localized residual heating, via inviscid instability
  - Significant flow control authority in subsonic flows (up to M = 0.3), scalable to large dimensions (~1 m)



#### Summary (cont.)

- Flow control by accelerated vibrational relaxation:
  - Injection of "relaxer" species in nonequilibrium flow
  - > Temperature and pressure rise due to accelerated relaxation
  - > Strong effect on supersonic shear layer
- Outstanding issues:
  - Can "late" small-scale random perturbations be used for boundary layer flow tripping (e.g. see Yan and Gaitonde, Phys. Fluids 2010)?
  - ➤ Can accelerating vibrational relaxation (e.g. by CO₂ injection) enhance NS-DBD actuator flow control authority?



#### Acknowledgments

AFOSR BRI "Nonequilibrium Molecular Energy Coupling and Conversion Mechanisms for Efficient Control of High-Speed Flow Fields"

US DOE Plasma Science Center "Predictive Control of Plasma Kinetics: Multi-Phase and Bounded Systems"

Dr. Keisuke Takashima and Dr. Atsushi Komuro, Tohoku University, Sendai, Japan,