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I. Motivation 



Energy Partition in Air Plasma vs. Electric Field 

Energy fraction 

Reduced electric field 

(4) N2 vibrational excitation: 
Quasi-steady-state discharges, 

low E/N 

(1) O2 vibrational excitation: 
Non-self-sustained discharges, 

very low E/N 
(5,6) electronic excitation, 

dissociation, (7) ionization: 
Pulsed discharges, high E/N 

Yu. Raizer, Gas Discharge Physics, Springer, 1991 

• Reduced electric field, E/N, controls input energy partition in the discharge 

• Rates of electron impact processes: strongly (exponentially) dependent on E/N 



Energy conversion in molecular plasmas: 
here is what we know 

• Energy is coupled to electrons and ions by applied electric field 

• Electric field in the plasma: controlled by electron and ion transport, and by 
surface charge accumulation 

• Energy partition (vibrational and electronic excitation, dissociation, ionization): 
controlled by electron density and electric field (or electron temperature) 

• Temperature rise in discharge afterglow: controlled by quenching of excited 
electronic states, vibrational relaxation 

• Plasma chemical reactions, rates of radical species generation: controlled by 
populations of excited electronic states, e.g. N2*, excited vibrational states, e.g. N2(v) 

• Time-resolved measurements of  𝑬𝑬,  ne ,  Te ,  N2
*,  N2(v), and radical species (O, H, 

OH, NO, CH, HO2, CH2O): stable, reproducible, high-pressure ns pulse discharges 

• Objective: quantitative insight into energy conversion mechanisms critical for 
plasma-assisted combustion and plasma flow control 

 



II. Electric field in transient plasmas: 
insight into discharge energy loading and partition 

 
Diagnostics: CARS-like 4-wave mixing 



2-D Ns Pulse Discharge in Atmospheric Air 

• Discharge sustained between a high-voltage 
electrode (razor blade) and grounded copper foil, 
covered with quartz plate 120 μm thick 

• Discharge gap 600 μm 

• Simple two-dimensional geometry, diffuse plasma 

• Peak voltage 7.5 kV, peak current 7 A, 
coupled energy 2 mJ 

• Two current peaks of opposite polarity: 
“forward” and “reverse” breakdowns 

• Time-resolved electric field measured at 
several locations in the plane of symmetry 

• Electric field distribution along the surface 
is also measured 
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“Curtain Plasma” Images, Negative Polarity Pulse 

• Front view: near-diffuse plasma “curtain” 
• Diffuse surface ionization wave detected, straight ionization front 
• Wave speed ~ 0.03 mm/ns 
• Surface plasma layer thickness ~150 μm 

Front view, 100 ns gate 

Side view, 2 ns gate 

Top view, 2 ns gate 

Laser beam  
locations 
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Time-resolved and Spatially-Resolved  
Electric Field Measurements 

• Initial field offset: charge accumulation on dielectric surface from previous pulse 

• Field follows applied voltage rise, increases until “forward breakdown” 

• After breakdown, field reduced due to  charge accumulation on dielectric surface 

• Field is reversed after applied voltage starts decreasing 

• After discharge pulse, field decays over several μs: surface charge neutralization by charges from plasma 

 

• Field distribution measured at the moment when field reversal occurs near HV electrode (t=70 ns) 

• “Snapshot” electric field distribution across the surface ionization wave front 

Laser beam  
locations 

Forward  
breakdown 

Reverse breakdown 
100 μm from 
HV electrode 
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III. Electron density and electron temperature 
in transient plasmas: 

insight into discharge energy loading and partition 
 

Diagnostics: Thomson scattering 



• Electron density: area under Thomson scattering spectrum 

• Electron temperature: spectral linewidth 

• Raman scattering rotational transitions in N2 used for 
absolute calibration 

• Gaussian Thomson scattering lineshape: Maxwellian EEDF  

Filtered Thomson Scattering:  
ne , Te, and EEDF inference 
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Thomson Scattering Spectra 
Sphere-to-sphere ns pulse discharge in H2-He and O2-He 

10% O2-He, P=100 torr, t=100 ns 
ne= 1.7·1013 cm-3, Te= 1.6 eV, T=350 K 

   

5% H2-He, P=100 torr, t=100 ns 
ne = 1.5∙1014 cm-3, Te = 2.0 eV 

 



Electron Density and Electron Temperature 
Sphere-to-sphere ns pulse discharge in O2-He 

• ne = 1013  - 3∙1014 cm-3 , Te = 0.3 – 5.5 eV (0-10% O2) 

• “Double maxima” in ne, Te : two discharge pulses 
≈400 ns apart 

• Electron temperature in the afterglow Te ≈ 0.3 eV 
Superelastic collisions prevent electron cooling 

• Modeling predictions in good agreement with data 
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IV. Dynamics of temperature rise in transient plasmas: 
“rapid” heating and “slow” heating 

 
 

Diagnostics: vibrational and pure rotational ps CARS 
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Data
Tfit=300K

Sphere-to-sphere ns pulse discharge in air, P=100 Torr 
Discharge pulse waveforms and CARS spectra 

N2(v=0) band (without plasma) N2(v=0-9) bands during and after discharge pulse 

10 
mm 

2 mm Pulse energy coupled 
to plasma ~ 0.5 eV 



Temperature rise in ns pulse discharge and afterglow: 
air vs. nitrogen 

• Compression waves formed by “rapid” heating, 
on sub-acoustic time scale, τacoustic ~ r / a ~ 2 μs 

• Strong effect on high-speed flows 

t= 1-10 μs (frames are 1 μs apart) 

Air, P=100 Torr 



• Strong vibrational excitation in the discharge,  N2(v=0-8) 

• Tv(N2) rise in early afterglow: V-V exchange,  N2(v) + N2(v=0) → N2(v-1) + N2(v=1) 

• Tv(N2) decay in late afterglow: V-T relaxation, N2(v) + O → N2(v-1) + O , radial diffusion 

• “Rapid” heating: quenching of N2 electronic states,  N2(C,B,A,a) + O2 → N2(X) + O + O 

• “Slow” heating: V-T relaxation,  N2(X,v) + O → N2(X,v-1) + O 

• “Rapid” heating: pressure overshoot on centerline, compression waves detected in experiments 

• NO formation: dominated by reactions of N2 electronic states, N2
*  + O → NO + N,  also in good 

agreement with [NO], [N] measurements 

Comparison with modeling predictions in air: 
vibrational kinetics and temperature rise 



Rapid N2 relaxation and temperature rise. Mechanism of  accelerated heating: 

• V-V energy exchange between N2 and CO2(ν3) mode: N2(v=1) + CO2(000) ↔ N2(v=0) + CO2(001) 

• CO2 energy re-distribution among vibrational modes:  CO2(001) + M ↔ CO2(100,020,010) + M  

• V-T relaxation of  bending mode: CO2(010) + M → CO2(100) + M  

• Strong effect on nonequilibrium compressible flows 

Adding CO2 (rapid V-T relaxer) to air: 
accelerating energy thermalization rate 



V. Fuel-air chemistry in transient plasmas:  
kinetics of plasma assisted combustion 

 
Diagnostics: Rayleigh scattering, LIF, CARS 



Hot central region:  
OH production dominated by chain branching 
H + O2   →   OH + O   ;    O + H2  →  OH + H  

Colder peripheral region:  
OH accumulation in HO2 reactions 

radial diffusion of H atoms;    
H + O2 + M →  HO2   ;    H + HO2   →   OH + OH  

Plasma chemical reactions and transport: 
ns pulse discharge in H2 - O2 - Ar, P=40 torr 



[OH] kinetics in preheated fuel-air mixtures  
after ns pulse discharge burst 

Comparison with modeling predictions: plasma assisted combustion kinetic mechanism validation 

“Near 0-D” diffuse plasma, a burst of 50-100 pulses used to couple sufficient energy 

H2 – air, ϕ=0.3 
T0=500 K, P=100 torr 

C2H4 – air, ϕ=0.3 
T0=500 K, P=100 torr 

Pulse #10  Pulse #100 

End View 



Plasma chemical reactions  
reduce ignition temperature in H2-air 

 

• ϕ=0.4, 120-pulse burst, T0=500 K, P=80-90 torr 

• Model predictions: good agreement with time-resolved temperature measurements 

• Ignition temperature with plasma, Ti ≈ 700 K, lower than autoignition temperature, Ta ≈ 900 K 



VI. Air plasma kinetics and plasma flow control 



• Every nanosecond discharge pulse 
produces a robust spanwise vortex 

• Enhanced mixing with free stream → 
boundary layer reattachment 

• Same effect detected up to u=96 m/sec 
(M=0.28, Rex~1.5 ∙106) 

• Consistently outperform AC DBD 
actuators 

 

45 m/sec 

Ns DBD plasma actuators:  
subsonic flow boundary layer reattachment 



Localized Arc Plasma Flow Actuators (LAPFA): 
Exciting instabilities in transonic and supersonic flows (M=0.9-2.0) 
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• BN nozzle extensions, tungsten wire electrodes 

• Circular nozzle, 1 inch diameter recently 

• Multiple channels controlled by fast HV switches 

• Independent control of frequency, phase, and duty 
cycle → excitation of different instability modes 



Axisymmetric mode 
 

First helical mode 
 

Flapping mode 
 

LAPFA: Formation of coherent structures  
in a M=0.9 circular jet 

• High amplitude perturbations (localized 
heating in arc filaments) 

• Every discharge pulse results in vortex 
formation 

• Flow responds to forcing near jet column 
instability frequency 



• Plenum: overlapped ns pulse / DC sustainer discharge for vibrational loading of N2 

• P0 = 300 torr, TV=2000, T=500 K, 2-D nozzle, top wall contoured, bottom wall plane 

• Condition at nozzle exit : M = 2.5, Pexit = 15 torr 

• Subsonic flow below expansion corner: injection of N2 or CO2 

• Optical access for schlieren, CARS, and NO PLIF in subsonic and supersonic flows 

Control of supersonic mixing / shear layer 
by accelerated relaxation of vibrational energy 

DC sustainer electrodes 

Flow into the page 
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• Time delay between frames 5 ms, t = 0-80 ms 

• Ns pulse / DC discharge (2.3 kW) is turned on at t = 10-45 ms, to excite main N2 flow 

• No perturbation of shear layer detected in N2 / N2 flow  

• In N2 / CO2 flow, shear layer expansion angle decreases, approaching θ=0˚ 

• No change observed if main N2 flow is not excited 

Effect of vibrational relaxation of shear layer:  
N2 / N2 (left) vs. N2 / CO2 (right) 

CO2 

N2  

N2  

N2  

CO2 “bleeding” through backstep N2 “bleeding” through backstep 



• Top flow: vibrationally excited N2, 
TV=1900 K, estimated Trot=240 K 

• Bottom flow: CO2 bleeding through 
backstep, static pressure 7 torr 

 

• CO2 bleeding reduces TV(N2),  
increases  Ttrans/rot  and static pressure  

• Consistent with time-resolved 
measurements in ns pulse discharge 
in quiescent N2-CO2 

• Static pressure increase pushes up 
shear / mixing layer 

N2 Vibrational Temperature Distribution 
in Shear Layer 



Summary: air plasma kinetics 

• Growing body of time-resolved, spatially-resolved data characterizing 
transient, high-pressure air and fuel-air plasmas 

• Measurements of electric field, electron density, and electron temperature 
necessary for insight into discharge energy coupling and partition 

• Measurements of temperature, N2(v) populations, and excited electronic 
states of N2

* necessary for insight into temperature dynamics 

• Measurements of N2
* and key radicals (O, H, OH, and NO) critical for 

quantifying their effect on fuel-air plasma chemistry 

• Comparing measurement results with kinetic modeling predictions provides 
confidence in the models, assesses their predictive capability 

 



• Surface and volumetric ns pulse discharges: energy thermalization on sub-
acoustic time scale, high-amplitude compression wave generation 

• Mechanism of energy thermalization (“rapid heating” and “slow heating”) 
is well understood 

• NS-DBD surface plasma actuators: large-scale coherent flow structures; 
significant flow control authority in subsonic flows (up to M = 0.3) at low 
actuator powers; scalable to large dimensions (~1 m) 

• LAFPA actuators: large-scale coherent structures; excitation of flow 
instability modes; significant control authority in transonic and supersonic 
flows (M = 0.9-2.0) at low actuator powers; scalable to large phased arrays 

• Flow control by vibrational relaxation: injection of “rapid relaxer” species 
into nonequilibrium flow at desired location; temperature and pressure rise 
due to accelerated relaxation; strong effect in supersonic shear layer 

 

Summary: nonequilibrium plasma flow control 
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