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Initial Impressions and the History of Probability Theory

e The subject of probability has been around for well over two thousand years. Through

the ages, it has gone through the complete cycle of scholastic evolution - from being
nothing more than pure guesswork, to being at best a half-baked branch of natural
science meant only for explanation of empirical data, to its present state in which it is
a firmly established abstract field of mathematics.

Even after the rigorous theoretical foundations of probability theory were laid down, it
was not accepted by all in the scientific and mathematics communities as a legitimate
field of mathematics. The primary controversy was one borne out of metaphysical
concerns - how could the mathematical reality underlying nature be written in the
language of chance? Even today, there are researchers who cringe from it, preferring to
believe in the deterministic view of the universe. A popular example is Albert Einstein,
who stated that “God does not play dice”. Ironically, part of the work for which he won
the Nobel prize (his 1905 seminal paper on Brownian motion) became the foundation
for the mathematical model of white noise, which is used universally for describing
random perturbations in engineering systems.

In light of all this fuss, we would first like to know if probability theory is actually a
legitimate field of mathematics?! This requires us to ask the following question: When
does a field of study become a well-founded branch of mathematics? In other words,
what is the mathematical method?

We have all studied about the scientific method at some point of our educational
training: it is an approach of studying nature that involves the following steps:

1. Observation of physical phenomena.

2. Formulation of hypothesis to explain observations.

3. Use of hypothesis to predict future behavior of the observed phenomena.
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. Most important: Continuous testing of the formulated hypothesis by repeated
experimentation, performed independently by several different researchers.

The above steps qualify without doubt astronomy as a field of science, but reduce
astrology to mere speculation. So then, what is the mathematical method? How
should probability theory be formulated so that it may unequivocally be regarded as a
field of mathematics?

We can say that a set of concepts becomes a well-founded area of mathematics if it has
the following underlying structure, known as the axiomatic framework:



1. At the bottom, it contains a set of “undefinables” which form the very basic
building blocks for more sophisticated ideas to follow. These cannot really be
defined, simply because there are no quantities simpler than them in terms of
which a definition could be written. Examples include a point, a line, an element
of a set, etc.

2. Using the undefinables, a set of azioms or postulates is laid down. These are “un-
deniable” properties. As undefinables cannot be defined, the undeniables cannot
be proved. The axioms result purely from intuition and do not involve mathemat-
ical reasoning. It is required that the set of axioms be consistent because they will
be used as the starting point to build the theory. Consistency is very important
in developing axioms.

3. Using the axioms, logic is employed to develop the theory. Today, this approach
is easy to follow because it uses the definition-theorem-proof style. Note that
definitions come after the axioms have been laid down.

The above procedure is called the axiomatic approach of mathematics and in fact, is
mathematics.

When there are only axioms and nothing else (not even definitions), we are in the
realm of pure abstraction. As we define objects and build theorems using them, we
start giving these abstract ideas concrete form. When the number of axioms underlying
a mathematical theory is small, the scope of the concrete results that follow is broad.
The best example is set theory - which has the fewest number of axioms. Therefore in
set theory alone, there are only a few theorems to prove; but, these theorems are widely
applicable. Consequently, set theory serves as a precursor to many other branches of
mathematics, including probability theory. As more axioms are added, more and more
theorems can be proved. This results in additional branches of mathematics, such as
topology (how close are two sets?), algebra (how can we add two sets?), geometry
(topology + algebra) and of course, probability theory. As mentioned above, there are
a lot more theorems to prove in these new branches of mathematics because there is a
greater number of axioms, but their applicability is narrower.

It was Andrey Nikolaevich Kolmogorov in the early 1930’s, who established prob-
ability as a branch of mathematics by building an axiomatic framework for it. Not
only did he formalize the process of computing probabilities, his work led to significant
generalization of previously held “notions”, making them formally applicable to a much
broader set of objects. Most significantly, before Kolmogorov’s arrival probability was
only applicable to countable sets. Under his axiomatic paradigm, it became possible to
extend it to uncountable sets as well. This will be of crucial importance to us in this
course.

As the title of this course suggests, we are interested in studying probability theory
in the context of dynamical systems. The history of dynamical systems can be traced
all the way back to Isaac Newton and his Newtonian mechanics. We will mostly be
concerned with dynamical systems evolving in continuous time, a general mathematical



model for which can be given by the following vector differential equation:
% = £(1,%) (1)

where, x € RY is called the state of the dynamical system. The vector function
f(t,x) : [0,00) x RY — RV has desirable properties of smoothness. Note that Eq.1 is a
set of N first order ordinary differential equations (ODE’s). This form of a dynamical
system is called its state-space form. For example, consider a damped linear spring:
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The above equation represents a dynamical system model for a linear spring damper
assembly, where x is the difference between the current and the natural lengths of the
spring. Note that Eq.2 is not in state-space form, because it is a second-order ODE.
In order to reduce it to state-space form, we have the following developments:

x'l = T2 (3&)
I'Q = —CIr9 — k‘:ﬂl (3b)

In the above equations, we have defined new states x1 = x and x9 = #. This allows
us to reduce the second order ODE of Eq.2 to two first order ODE’s. We thus get the
state-space form, and z; and x5 are the two states of the spring-damper system. In
terms of physics, note that they correspond to position and velocity respectively. The
two equations can be written together in vector form as follows:

U = et iaf - (SU)) 2

The above system is of the type given in Eq.1, with x = {z1, 22} € R2.

What is missing in the dynamical system model of Eq.17 This is a typical question
asked in every introductory lecture on mechanics! An ODE is written down, following
which the instructor asks with excitement - what did I miss? And someone gives the
answer with a bored look on their face - the initial conditions..

Indeed, initial conditions are required to complete the description. Let us therefore
write the whole thing again:

X = f(t, X), X(t = to) = Xy (5)
The solution to the above equation is given by:
t
x(t) =xo + / f(r,x)dr (6)
to

The above model of a physical process is called a deterministic dynamical system.
It is called deterministic because complete knowledge about the states can be obtained
for all times, i.e. x(t) Vt € [to,00), without any room for doubt or uncertainty. This
assumes the following:



1. Eq.5 captures the complete description of the dynamical system. There are no
other residual disturbing forces such as “noise” left unmodeled.

2. The precise value of the initial conditions, i.e. x(tg) is known.

3. All the system’s parameters are known without any uncertainty. In the discussed
model of a linear spring, we have two parameters: ¢ and k. Both of them should
be known perfectly.

4. The integral in Eq.6 can be computed, either analytically or numerically.
e Therefore, given a fixed initial condition and a fixed integrator, the same trajectory i.e.

x(t) will be obtained irrespective of how many times the experiment is repeated. This
is the essence of determinism. See Fig. 1 for an example.
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Figure 1: A two dimensional (N = 2) example of a deterministic dynamical system.

e Quite clearly, the deterministic model is extremely powerful! Laplace was probably
the most vocal proponent of the deterministic model of the universe. He said that
in principle, if at a given time we had the knowledge of position and velocity of all
particles that exist, we could predict deterministically the future of the universe. As
you can guess, determinism entails several philosophical implications. One pertinent
question is the following: Is such a deterministic mathematical model of the real world
possible?

e We all know that the question of determinism has caused numerous battles among
scientists and mathematicians over the past several decades. At the microscopic level,
the long held view of a deterministic universe came under question when Heisenberg
propounded his uncertainty principle - the fact that observation changes the outcome
of an experiment, thus making determinism impossible. Even though this is true, such
collapse of determinism occurs only at the microscopic level. At the macroscopic level
in which most of us engineers operate, the Heisenberg uncertainty principle is too weak
to meaningfully influence the outcome.



e In this course, we will look at macroscopic systems and study how the deterministic
view of the universe is inadequate or impractical for them.

e What are the possible sources of uncertainty in a macroscopic dynamical system? It
will be useful to re-examine the list given in Pg. 4 as conditions of determinism, while
also looking at Eq.5. First, let us consider only the first two items on this list. When
items 1 and 2 in the list fail, we obtain the following two main sources of uncertainty:

1. Presence of random perturbations, or, noise in the system, which directly influ-
ences the evolution of state dynamics. This perturbation is present in addition to
the “deterministic part” of the model, namely f(¢,x). For now, we are assuming
everything about the function f(¢,x) is completely known.

2. It is also possible that the initial conditions are not known precisely. In real life,
this is typically the result of imperfect measurements.

e The deterministic dynamical system model of Eq.5 can now be expanded to include
the two sources of uncertainty described above. For simplicity, let us first consider the
case of a scalar state-space (N =1):

&= f(t,x) + (), Wi(to, ©) = Wo(x) (7)

Written in the above form as an ordinary differential equation with a deterministic part
and a non-deterministic “noise” part, Eq.7 is called a Langevin equation. In Eq.7,
¢(t) represents “noise”, a random perturbation typically much smaller in magnitude
than the deterministic force f. A typical comparison of relative magnitudes is shown
in Fig.2(a). The symbol W is explained below in Pg. 6.

e We will learn in this course that it is not easy to model the random force ((t). It
has many exotic properties, the most intriguing of which is that it is impossible to
generate the same time-history of noise in two separate runs of an experiment, even
under the exact same conditions and the same initial conditions. Each time-history
can be referred to as a “noise sample”. Obviously, this is a body blow to the concept of
determinism on the macroscopic scale. Every time we run the experiment, the random
forces driving the system will be slightly different, thus making it impossible to make
definitive predictions about the future of the dynamical process. This situation is
shown in Fig.2(b), where three integrations starting from the same initial conditions
give three different time histories of the state. The noise sample for each run of the
numerical experiment is also shown. For these figures, do not bother with the numbers
on the y-axis. Just concentrate on the qualitative nature of the plots. The point is
that different runs give different results despite using the same integrator and the same
initial conditions.

e The second source of uncertainty mentioned above is the lack of precise knowledge of
initial conditions. This form of uncertainty is fairly common and makes physical sense.
No instrument is perfect and therefore it is never possible to know exactly what values
the state has at 9. We can at best provide a probabilistic description. L.E., instead
of specifying the initial value of the state as x(t9) = xg, we say that the probability
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Figure 2: The first source of uncertainty in dynamical systems: random perturbations.

density function (pdf) of the state at to is W(to,x) = Wh(x). A typical output of
an instrument used to measure the initial conditions is shown in Fig.3(a). The yellow
circle is the “average” value of all possible initial states.

e A pdf is very much like a mass density function. You know that integrating the mass
density over a volume V gives the mass of the object contained in the volume V.
Similarly, integrating the pdf of the state over a region A of the state-space gives us
the probability of the state assuming some value in the region A:

P(zg € A) = /AWO(:L’)da: (8)

We will obviously elaborate more on the above equation in class. For now, you need
to know that at tg, the state could actually have any value in RV, and the probability
of it being in a particular region can be computed by integrating its initial probability
density function.

e The pdf of the state at ¢, i.e. Wy(z) will depend on the characteristics of the instrument
used to measure the initial conditions. We will learn about many different types of pdf’s.
The most common and perhaps the most important is the Gaussian pdf. A Gaussian
pdf in two dimensions is shown in Fig.3(b).
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Figure 3: The second source of uncertainty in dynamical systems: random initial conditions.

e Langevin’s equation can be generalized to the vector case as follows:
x =f(t,x) + g(t,x)C(t), W(to,x) = Wo(x) (9)

In the above equation, x € RV is the state and ¢ € RM is a M-dimensional noise
process. Clearly, f(t,x) : [0,00) x RV — RV and g(t,x) : [0,00) x RN — RV*M jg
called the noise-influence matrix, containing sufficiently smooth functions. Note that
both f and g can be highly nonlinear in nature.

e Besides the two sources of uncertainty described above, there is one other important
source of randomness that plays havoc with the idea of determinism. This is known
as parametric uncertainty and involves the parameters contained in the function f
and perhaps even g. This is best explained with an example. We see that in Eq.4,
fo = —cxo — kxy. Just like we are not sure about the initial conditions, we could
similarly not be sure about the value of the spring constant k. Perhaps it can also only
be described probabilistically, just like the initial conditions. This complicates matters
even further.

e There exist special techniques for handling parametric uncertainty, the most popular
of which is called polynomial chaos (PC). We will look at PC briefly in this course.

e In light of the above types of uncertainty, we need to ask the question - what knowledge
is actually possible? Clearly, plotting trajectories as we did for the ideal deterministic
system would make no sense - there are uncountably many of them! We would need to
consider an infinite number of noise samples for an infinite number of possible initial
conditions, possibly for an infinite number of values of the system parameters! So what
do we do?

e The answer must be given in a way that makes sense to the engineer. Actually there
are several answers, but according to me, there is only one that makes engineering



sense. Mathematicians have tried to give absolute descriptions of the state even in
such hopelessly uncertain settings. There has been some success, but the problem lies
in the fact that such descriptions are not very useful, especially to the practitioner.

When the problem set-up is so inherently probabilistic, it makes perfect sense to give
estimates about the system that are also probabilistic. This can mean only one thing -
instead of trying to solve for the time varying state of the system, i.e. x(¢); solve for its
time varying probabilistic description. This will obviously need a lot of explaining. But
first, it will require an understanding of what we mean by probabilistic descriptions. A
glimpse was given when we talked about the probability density function, or the pdf.
We looked at the probability density of the state at time ¢y, which we called W(tg, ).
Then, the complete probabilistic information about the state of the random dynamical
system, influenced by one or more of the described forms of uncertainty can be obtained
by computing the probability density function of the state at all times, i.e. W(t,x).
This will always be the ultimate objective.

In summary, we are attempting to bring together two separate fields in this course -
dynamical systems and probability theory. Before we proceed to the technical details,
it is important to learn a little about the history of probability theory:

— BC era: Both in Greece and Rome, games of chance were popular. However, there
was no scientific or mathematical development of the subject. It is speculated
that the main reason was the number system used by the Greeks, which was not
amenable to algebraic calculations.

— 16" century: Italian mathematician Girolamo Cardano published the first book
containing correct methods for calculating the probabilities in games of chance
involving dice and cards. Probability was mainly considered an exercise in count-
ing.

— 170 century: Work by Fermat and Pascal stirs further interest in the field of
probability, which was still being studied as a counting of frequencies.

— 18h century: Jacob Bernoulli introduced the first law of large numbers after
studying repeated coin tossing experiments. This was an important step towards
linking empirical physical reality with conceptual probability. Contributions were
made by several heavyweights of mathematics like Daniel Bernoulli, Leibnitz,
Bayes, Lagrange and De Moivre. De Moivre introduced the normal distribution
and proved the first form of the central limit theorem.

— 19" century: Laplace published an influential book, firmly establishing the im-
portance of probability theory as a quantitative field. He also provided a more
general version of the central limit theorem. Legendre and Gauss applied proba-
bility to problems in astrodynamics through the method of least squares. Poisson
developed the Poisson distribution and published an important book with numer-
ous original contributions. Chebyshev and his students, Markov and Lyapunov
studied limit theorems, leading to very important results.



— Important fact about development of probability theory thus far: In the develop-
ment of the theory of probability up to this point, probability was primarily viewed
as a natural science, whose primary goal was to explain physical phenomena in the
context of repeatable experiments. The keyword here is “repeatable”, because so
far probability was considered an exercise in counting and then determining the
chance of occurrence as the limit of relative frequencies. This counting approach
to probability is today known as the frequentist approach to probability. Note
that this approach relies heavily on empirical support. Also note that with this
approach, it is possible only to deal with finite sized, or at most countable sets of
data. Kolmogorov changed all that in the 20" century.

— 20" century: Andrey Kolmogorov is the key figure among several giants who
made contributions to this field. It was Kolmogorov however, who established
probability theory as a pure branch of mathematics, thus banishing its status as a
natural science. He did this by discarding the empirical frequentist approach de-
scribed above and formulating the axiomatic framework of probability. Prob-
ability could now be studied as a subject in itself, purely on the basis of logical
correctness arising out of the axiomatic structure, and without any dependance on
physical phenomena. This was the turning point for probability theory and today
it has become one of the most theoretically sound and unfortunately, sometimes
highly esoteric fields of mathematics.

e As mentioned above, this course is about the application of probability theory to dy-
namical systems. It is therefore important to study that branch of the history as well:

— The first known application of probability theory to dynamical systems was in the
frequentist era (i.e. before Kolmogorov’s seminal work), by well known physicists
Maxwell and Boltzmann in the 1860’s. They were trying to prove that heat in
a medium is nothing but the random motion of the constituent gas molecules.
With reference to Eq.9, they modeled the system without random perturbation
(i.e. g(t,x) = 0) and only initial state uncertainty. Their work culminated in the
Maxwell-Boltzmann distribution, which is the steady state distribution of the gas
molecules in an undisturbed medium. Details are available in the 1896 book by
Boltzmann. Their work was pioneering, but riddled with annoying paradoxes and
inconsistencies. Nonetheless, they were able to account for several properties of
gases.

— Around this time, Rayleigh (1880, 1894), who among other things was also a
physicist, studied (unknowingly) the problem of random walk in two dimen-
sional space. He arrived at a partial differential equation describing the evolution
of the displacement of the object performing the random walk. This was later
identified as the first form of the Fokker-Planck equation (FPE). FPE is a
very important equation in the subject of probabilistic mechanics, having some
resemblance (philosophically speaking) to Newton’s second law of motion for de-
terministic mechanics. We will learn about FPE towards the end of this course.

— French mathematician Bachelier was studying the problem of gambler’s ruin,
which is another manifestation of the random walk problem. He obtained a more



general form of the Fokker-Planck equation. Note that FPE did not get its name
at this point because neither Fokker nor Planck have yet entered the picture. It
is only in retrospect that we know the equations obtained by Rayleigh, Bachelier
and others were nothing but the FPE.

The stage was set for Albert Einstein, who in 1905 brought together the works
of Maxwell and Boltzmann and the random walk approach to develop the theory
of Brownian motion. He considered the following simplest possible form of a
randomly perturbed system:

i=C (10)

where, x is the displacement of the fluid particle performing Brownian motion and
¢ is a random impulse acting on the particle due to collisions with its neighbors.
Assuming the displacements to be small, he proceeded to obtain a partial differ-
ential equation for the probability density function of x, the displacement of the
fluid particle. This was the simplest form of the Fokker-Planck equation. Note
that he was considering only a single dimensional Brownian motion (Eq.10 is a
scalar ODE).

In the meantime, there was another significant contribution by Paul Langevin in
1908. He was the first to actually provide Eq.7. In other words, it was his idea
to write the dynamics of a randomly perturbed system as an ordinary differential
equation, in which the forces are split into a deterministic part and a random
disturbance part appearing as an additional forcing function. This served as an
amazing clarifying tool for understanding the internal workings of a random dy-
namical system. Its power lies in its simplicity. We will later see that Langevin’s
description of a random dynamical system as a system of ODE’s encounters seri-
ous problems of mathematical rigor. Nonetheless, these problems do not change
the fact that it still is a great visualization device for understanding the physics
of the problem.

In 1914, Adriaan Fokker - part time musician and part time physicist applied
probability theory to study a first order ODE system with noise and obtained
a partial differential equation. He had considered the general case in which the
noise intensity was dependent on the state of the system. In 1915, Max Planck
generalized Fokker’s work to vector systems (N > 1 in Eq.9) and applied it to
problems in quantum mechanics. The partial differential equations that
Fokker and Planck obtained with the state probability density function
as the unknown was named the Fokker-Planck equation. We will study
this equation in detail. But first, we need to build our background in probability
theory and understand what a probability density function is!

The theory of FPE was greatly enhanced and made more abstract by Kolmogorov
and his axiomatic framework of probability. He also talked about the unique-
ness of the solutions of FPE. To honor Kolmogorov’s seminal contributions to
this area, the Fokker-Planck equation is also sometimes called the Fokker-Planck-
Kolmogorov equation (FPKE), and also Kolmogorov’s first equation.
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— Since Kolmogorov, the focus on random dynamical systems has been channeled
in two main directions: (1) consolidation of the theory of random processes and
(2) application of the theory to engineering problems. Notable researchers for
the former are Andronov, Uhlenbeck, Ornstein, Chandrashekhar, Smoluchowski,
Stratonovich and more recently, Sean Meyn and Kushner.

— A large number of researchers started applying probability theory to study nonlin-
ear random vibration problems in various fields of engineering in the 1960’s. Those
interested should look at papers by Caughey, Ariaratnam, Dienes, Crandall and
Lyon for extremely readable research articles (from the 60’s).

— Another chunk of research effort was directed towards the use of probability theory
to solve problems in control of nonlinear systems perturbed by random forces. To
learn about the early work in this direction, look for papers by Stratonovich,
Bellman, Chuang, Kazda and Barrett from the 1960’s.

— Today, FPE lies at the heart of numerous problems in engineering - for example,
structural vibration for mechanical and civil engineering applications; uncertainty
propagation in nonlinear dynamics, including astrodynamics; nonlinear filtering
theory; stochastic control theory; chemical process equilibria; particle physics, etc.

— Unfortunately, we have found that FPE is a formidable problem to tackle. Ana-
lytical results have not been found except for the simplest of cases. In the 1970’s,
with the advent of moderately powerful computers, numerical attempts were ini-
tiated but quickly ran into multiple roadblocks. We will discuss these roadblocks
later. For now, it suffices to mention that the biggest obstruction is something
known as the curse of dimensionality. In the 70’s, researchers used discretization
techniques like finite differences (Killeen, Futch, Whitney etc.). In 1985, Langley
used finite elements (FEM) for the first time, which then became the norm for
about 20 years. And more recently, I have used what is known as the meshless
finite elements technique to correct the shortcomings of FEM for FPE.

— In conclusion, it is important to mention that FPE is the most accurate probabilis-
tic description of a continuous random dynamical system modeled by the Langevin
equation in Eq.9. Ever since it was discovered that its analytical solution is ex-
tremely difficult to obtain, researchers started looking for alternate methods of
analysis. Some of the popular approximate methods are statistical lineariza-
tion, Gaussian closure, higher order moment closures and Monte Carlo
methods. Actually, Monte Carlo method is not really an approximate technique
- it converges to the true answer (the one that FPE would provide), but only in
the limit as the computation effort tends to infinity. The rate of convergence has
also been a controversial issue so we will look at Monte Carlo as an approximate
technique. We will study at least some of these alternate methods in this course.
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