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Abstract 

This investigation focuses on a class of rear suspension systems that 

contain both direct and intersecting structural paths from the tire 

contact patches to the vehicle body. The structural paths intersect 

through a dynamically active rear subframe structure. New 

experiments and computational models are developed and analyzed in 

this article to investigate the variability of structure-borne noise and 

vibration due to tire/road interactions in the lower- to mid-frequency 

regimes. Controlled operational experiments are conducted with a 

mass-production minivan on a chassis dynamometer equipped with 

rough road shells. Unlike prior literature, the controlled experiments 

are analyzed for run-run variations in the structure-borne noise up to 

300 Hz in a single vehicle to evaluate the nature of excitations at the 

spindle as the key source of variation in the absence of significant 

manufacturing, assembly and instrumentation errors. Further, a 

deterministic modal expansion approach is used to examine these 

variations. Accordingly, an illustrative eleven-degree-of-freedom 

lumped parameter half vehicle model is developed and analytically 

utilized to demonstrate that left-right spindle excitation phasing 

dictates the participation of the subsystem vibrational modes in the 

system forced response. The findings are confirmed through the 

analysis of a reduced finite element model of the vehicle system with 

a high-fidelity, modally dense suspension model, where the left-right 

rolling excitation phasing at the spindle alone is found to affect the 

component dynamic vibration amplitudes up to ±30 dB depending 

upon the component location and frequency range. These results are in 

qualitative agreement with the type of variations observed in the 

experiments. 

 

Keywords: operational experimental studies, vehicle models, vibration 

modes, vehicle subframes, structural transfer paths 

Introduction 

Variability in vehicle vibration, structure-borne noise and interior 

noise levels due to tire-road interactions has been studied for at least 

two decades [1,2], as evident from the literature survey by Lalor and 

Prieibsch [1]. Several statistical studies have found variability in 

measured noise and vibration data for nominally identical vehicles [3-

8]. In particular, Kompella and Bernhard [3] used a large sample of 99 

nominally identical vehicles to study variations in both structure-borne 

and air-borne frequency response functions; they reported that the 

most significant variations were due to manufacturing and assembly 

differences when measurement variations are controlled. While a 

significant body of literature exists on variations in structural 

frequency responses and modal parameters [4], fewer attempts have 

been made to examine vibro-acoustic variations under operational 

loads [5,6,8]. To fill this void, this article proposes a deterministic 

modal expansion approach to examine variations in structure-borne 

noise at the lower frequency end (from 30 to 300 Hz). Further, this 

article explores the contribution of the left-right rolling excitation 

phasing at the spindle to run-run variations in acoustic-structural 

parameters that occur during operational dynamometer experiments 

and to develop minimal order dynamic and finite element models to 

provide plausible explanations for the underlying physics. 

Problem formulation 

The focus of this article is on a class of rear suspension systems where 

a metallic subframe creates an intersecting structural path between the 

left and right tire contact patches and the vehicle body. A schematic of 

such a system is provided in Fig. 1 with ten multi-dimensional 

structural paths between the tire contact patch and the vehicle body in 

the form of four connections via the subframe and two connections 

each via the left and right trailing arms, dampers and suspension 

springs. A simplified dynamic model, which reduces the number of 

paths to four single-dimension paths while retaining the intersecting 

structural paths via a subframe representation, will be proposed in this 

article. The chief objectives of this article are as follows: 1. Examine 

run-run variations in measured structural-acoustic responses under 

controlled operational rolling-tire experiments on one vehicle; 2. 

Develop and analyze two formulations (a high-fidelity finite element 

and then minimal order lumped parameter model) to examine the role 

of the left-right excitation phasing at the spindles on the subframe 

responses; 3. Provide explanations for variability while examining the 

physics of this problem; and 4. Compare the finite element model with 

operational measurements. 

The subject of this article is limited to linear time-invariant system and 

frequency domain methods with assumed loss factors. The frequency 

range is limited from 30 Hz to 300 Hz, as this is the range within which 

structure-borne road noise and vibration phenomena of interest (from 

the perspective of subframes) occur. Accordingly, both finite element 

and lumped models include only structural representations of 

components from the spindle to the vehicle body and explicitly ignore 

the tires, wheels, and cabin acoustics since there is significant 

complexity involved in the development of accurate models of the 

entire vehicle system. For instance, current tire models described in the 

literature [9] may not be valid over broad-range frequencies, and there 

is a lack of well-established experimental data to validate 

computational models. In this work, the suspension is excited by 

imposing (assumed) motions at the left and right spindles. While the 

inclusion of the vehicle body may provide stronger correlations in the 

lower-frequency ranges, accurate modeling of dynamic interactions 

between the vehicle body, suspension system and tires is beyond the 
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scope of this article. Only the deterministic nature of the variations in 

the operational tests is examined using both sound and vibration 

spectra as well as operational deflection shapes, which serve as good 

visualization tools to study the subframe dynamics under real 

operating conditions. 

 

Figure 1: Schematic of rear suspension (a) top view; (b) side view; key- A, 

subframe; B, suspension spring; C, damper; D, trailing arm; E, spindle center; 

locations for accelerometers on the subframe are given by 1–6. 

Operational vehicle measurements 

Controlled vehicle measurements on a chassis dynamometer are 

conducted on a front wheel drive, mass-production minivan. Only the 

rear wheels of the vehicle are driven over the rough-road textured 

rollers, and both the left and right textures are constructed from 

identical molds and oriented 180 degrees from left-to-right. 

Microphones (TMS T130C21, typical sensitivity - 20 mV/Pa) are 

placed at the driver’s left and right ear positions to measure the cabin 

sound pressures, and tri-axial accelerometers (Dytran instruments, 

32723-A-2, typical sensitivity - 100 mV/g) are placed on many 

locations of the rear suspension, including six on the rear subframe as 

shown in Fig. 1. The placement of 6 accelerometers permits the capture 

of the rigid body modes and first three flexural modes of this particular 

subframe.  Only the steady-state measurements of sound pressure 

levels (Lp, dB re 20 μPa) at the driver’s ears and accelerations (dB re 

1.0 g rms) at the suspension locations are made at roller speeds of 40, 

80, and 120 kph.  Since variations are observed of the same magnitudes 

for each roller speed, only the 80 kph results are shown.  Further, 

constant roller speeds are intentionally selected to remove the 

complexity of speed-dependent rolling-tire properties from the 

analysis.  Each narrow-band spectrum is based on 50 averages of 

signals acquired at a sampling rate of 1024 Hz with a resolution of 2 

Hz up to 512 Hz. 

Three identical runs of this experiment are performed, and the 

measured sound pressure and acceleration levels are compared for 

variations on a narrow-band basis. Fig. 2(a) shows variations in Lp 

measured at the driver’s left ear, and Fig. 2(b) displays a hatch plot 

where the area depicts the variations in Lp observed over the three runs. 

The upper and lower limits of this hatch are formed by computing the 

maximum and minimum Lp levels measured. The difference between 

these two sound pressure levels, ΔLp, is shown in Fig. 2(c). While a 

maximum variation of about 25 dB(A) is found, somewhat minimal 

variations at some of the major peaks in the spectra are observed. The 

vertical acceleration levels for location 1 on the rear subframe and for 

the spindle center are illustrated in Figs. 3 and 4, respectively. The 

hatch plots in Figs. 3(b) and 4(b) follow a trend similar to the sound 

pressure spectra, and this confirms that the structure-borne noise is the 

dominant path. Further, maximum  

 
Figure 2: Measured sound pressure level spectra (Lp, dBA re 20 μPa) at the 

driver’s left ear (DLE) on a 2 Hz narrow-band basis from 30-300 Hz (a) run-

run variations:  , Run 1; ----, Run 2; , Run 3; (b) hatch plot 

representation of the run-run variations; (c) difference between maximum and 

minimum sound pressure levels (ΔLp, dBA) at each frequency. 

variations of 23 dB and 28 dB are observed in the measured 

accelerations at the subframe and spindle, respectively (Figs. 3(c) and 

4(c)); but some of the major peaks remain less sensitive to variations, 

as observed in the sound pressure levels. Since the experiment is 

conducted on the same vehicle without any changes to the 

instrumentation system and setup, the main source of the observed 

changes could be attributed to variation in the orientation of the tires 

on the textured rollers between the three runs. The consistency in the 

peak responses observed in the sound or acceleration spectra for the 

identical three runs further confirms that assembly and measurement 

are not the sources of variations. 

Next, measured operational deflection shapes (ODS) are utilized to 

visualize and understand the physical meaning of these variations. The 

displacement responses, at a selected excitation frequency, acquired at 

six locations on the subframe (shown as 1 to 6 in Fig. 1) are used to 

construct these ODS displays. The forced response is captured in each 

view as a trajectory scaled by a factor for visualization purposes; these 

trajectories are then superimposed on the subframe schematics to 

enhance visualization. The locations at which trajectories are made are 

marked in Fig. 5 by shaded circles, while the open squares indicate the 

starting point. Based on averaged variations between the runs at the six 

different locations on the subframe, ODS at 244 Hz with a high 

variation is selected to illustrate the subframe dynamics. Four views 

(top, front, left and right) are displayed in Fig. 5 for the deflection 

shapes, and a comparison is made between the three runs. In run 1, the 

trajectory of location 2 (subframe cross member) is a motion that can 
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be visualized as a combination of motion seen in the schematic for the 

XY and XZ view. However, in run 2 the rotation in the XZ plane is in 

a different direction and orientation, and the angular motion found in 

runs 1 and 2 is non-existent in run 3. The ODS display further 

establishes the participation of the subframe in the 150-250 Hz 

frequency range of interest and their possible sensitivity to excitation 

variations between the runs. 

Figure 3: Measured acceleration spectra (𝐿𝑧̈, dB re 1.0 g rms) on the rear 

subframe (at location 1 as shown in Fig. 1), on a 2 Hz narrow-band basis from 

30-300 Hz (a) run-run variations: , Run 1; ----, Run 2;      , Run 

3; (b) hatch plot representation of the run-run variations; (c) difference between 

maximum and minimum acceleration response (Δ𝐿𝑧̈, dB) at each frequency. 

Figure 4: Measured acceleration spectra (𝐿𝑧̈, dB re 1.0 g rms) at the spindle 

center at 2 Hz resolution (E in Fig.1). (a) run-run variations: , Run 1; ----

, Run 2;  , Run 3; (b) hatch plot representation of the run-run variations; 

(c) difference between maximum and minimum acceleration response (Δ𝐿𝑧̈, 

dB) at each frequency. 

 
Figure 5: Measured operational deflection shape of subframe at 244 Hz (a) Run 

1 (b) Run 2 (c) Run 3:● ,locations on the subframe where deflections are 

measured; □, trajectory starting point (at t = 0); ― , trajectory. 

Development of high-fidelity finite element 

model 

A high-fidelity computational model of a rear-half vehicle is 

developed to study the physics behind the run-run variations observed 

in operational experiments. The vehicle body is assumed to be rigid 

(ground) and massive relative to the rear suspension components in the 

finite element model shown in Fig. 6. The subframe and other 

suspension components are connected to the rigid  

Figure 6: Finite element model of the rear suspension. 

vehicle body via bushings represented by stiffness and damping 

elements. In addition, the tires, wheels, and cabin acoustics are 

explicitly ignored to simplify modeling complexities. Here the 

subframe consists of 63,000 shell elements (in ABAQUS [10]), and 

the other suspension system is described by 155,350 shell and solid 

elements. A component-by-component modal analysis of the rear 

suspension model under free-free boundary conditions reveals that 

certain components, such as the dampers, suspension springs, 

subframe and trailing arms, have a relatively more significant modal 

participation with up to 10 modes in the frequency range of interest 

(30-300 Hz). The eigenvalue analysis of the full rear suspension model 

reveals that this system is modally dense, with as many as 96 modes in 
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the 30-300 Hz range of which 65 modes lie in the 150-300 Hz range, 

where the subframe is found to have significant modes. Based on this 

observation, the finite element model is further reduced to ignore few 

non-participating components, such as the brake pads and rotors, with 

the reduced model consisting of a total of 163,000 elements.  Structural 

damping is the primary damping mechanism considered for the 

suspension model, with the metallic components assigned a nominal 

loss factor of 0.001.   The axial properties of the hydraulic damper are 

assumed to be viscously damped, and the component connector 

elements (such as bushings) are assumed to be damped and thus given 

by a complex-valued stiffness element, where γ is the assumed loss 

factor (1 to 20% depending on the component): 

𝑘̃ = 𝑘(1 + 𝑖𝛾). 

(1) 

Development of an illustrative, reduced order 

model of rear-half vehicle 

Since no significant literature exists on lumped parameter models for 

studies of this nature, an iterative process is adopted to develop a 

lumped model to study the underlying system physics and qualitatively 

correlate with the finite element model. As the excitation from the tire 

is primarily in the vertical direction [11] for road noise and vibration 

problems, a lumped model with only vertical degrees of freedom is 

developed. Since the rear suspension system of interest has intersecting 

transfer paths through a dynamically active subframe, a minimal order 

lumped parameter model of 11 degrees of freedom, which captures two 

of the transfer paths (suspension springs) from the spindle to the 

vehicle body in addition to the subframe, is developed as illustrated in 

Fig. 7. 

 
Figure 7: Lumped model (11 DOF) of the vehicle system (half-car type 

approximation). Refer to the list of symbols in the text for identification of 

symbols, including subscripts. 

The vehicle body is considered as a single (massive/rigid) lumped 

mass (mv) with one translational coordinate (zv) and one rotational 

coordinate (θv), where the subscript v denotes vehicle body. mv is 

assumed to be about 30% of the vehicle mass. The moment of inertia 

of vehicle body (Iv) is calculated as Iv=mvl mvr l2/(mvl +mvr), where mv 

is approximated by two lumped masses (mvl and mvr) on the left 

(subscript l) and right (subscript r) extremities of a massless rod of 

length l. Assuming mvl = mvr = mv/2, the above expression reduces to 

Iv=mv l2/4. The vehicle subframe is approximated by a simple three-

degree-of-freedom semi-definite system with only vertical 

displacements zsl, zsm and zsr, where subscript s denotes the subframe 

and subscripts l, m and r denote left, middle and right, respectively. 

This model consists of masses msl, msm and msr connected by a bushing 

connector element with an elastic stiffness ks. The parameter values are 

chosen such that the first two flexural modes of the subframe are 

captured in terms of both the natural frequencies and dominant vertical 

mode shape. The static stiffness of the subframe must be evaluated 

from the finite element model in order to assess relevant mass and 

stiffness parameters for the subframe lumped model. Four different 

iterations are considered, and the corresponding computed static 

stiffness and the lumped mass values to physical subframe mass (as a 

ratio) are analyzed. The iterations involve different boundary 

conditions and loading schemes at the connection points between the 

subframe, the vehicle body and the other suspension components. The 

subframe is attached to the vehicle body through bushings via four 

connection points, one at each corner of the subframe arms, and it is 

connected to the other suspension components via four connection 

points located at the bottom of the subframe, with two connections 

each to the left and right half of the suspension components. For case 

1, the four connections on the subframe arms and two of the 

connections (one on each side) at the bottom of the subframe, which 

are located farther away from the middle of the subframe, are clamped. 

The other two connections at the bottom, which are closer to the middle 

of the subframe, have their rotational degrees of freedom arrested, and 

two equal amplitude static loads, 0.5P, are applied. The static stiffness 

is calculated by dividing the average of the static load by the average 

of the static deflections δ computed at the driving points. This yields a 

high stiffness and a lumped mass that is 2.5 times the actual subframe 

mass. In case 2, the clamped connections from case 1 are replaced by 

pinned connections, and similar static loads are applied. The pinned 

connections lower the static stiffness, but this value still yields a high 

mass ratio, which is not desirable. In case 3, the pinned connections at 

the lower section of the subframe are changed to free boundary 

conditions, and using the computed stiffness, a mass ratio of 1 is 

achieved. In case 4, the connections on one side are clamped, and the 

vertical static load is applied on the other side, but this results in an 

order of magnitude reduction in the mass ratio, which again is 

undesirable. Hence, case 3 is chosen to be the best case to capture both 

the natural frequencies and the flexural modes of the subframe. 

The left and right subframe masses are connected to the vehicle body 

through bushings represented by masses mbl and mbr, where the 

subscript b denotes bushing. The stiffness elements kvb (= kbs), where 

subscripts vb and bs denote the connections between vehicle and 

bushing, and subframe and bushing, respectively, are calculated as 

kvbkbs/(kvb+kbs) =kvb/2 = kbz1, where kbz1 property is obtained from the 

finite element model. Similarly, the spindle masses, mdl and mdr, where 

subscript d denotes spindle, are connected to the subframe masses 

through bushing stiffness elements ksd (= kd) computed as ksd 

kd/(ksd+kd) = ksd/2 = kbz2, where the parameter kbz2  is obtained from the 

finite element model. Knowing kvb and kbs, and considering a single-

degree-of-freedom approximation for the bushing where the spring 

elements are both connected to the ground, the masses mbl and mbr can 

be calculated using 𝑓𝑛 = 1 2𝜋⁄ √(𝑘𝑣𝑏+𝑘𝑏𝑠) 𝑚𝑏𝑙⁄ , such that the natural 

frequency fn is equal to 500 Hz. 

The path through the suspension springs is approximated using masses 

mgl and mgr, where subscript g denotes the suspension spring and 

stiffness kgd and kvg. Similar to the subframe static stiffness 

calculations, the static stiffness of the finite element model of the 

spring is computed. Using a single-degree-of-freedom approximation 

similar to the bushing approximation, the static stiffness value and the 

effective mass of the spring are computed. 
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Real eigensolution of the lumped vehicle model 

The equations of motion of the lumped system of Fig. 7 are as follows: 

𝑚𝑣𝑧̈𝑣 + 2(𝑘𝑣𝑔 + 𝑘𝑣𝑏)𝑧𝑣 − 𝑘𝑣𝑏𝑧𝑏𝑙 − 𝑘𝑣𝑏𝑧𝑏𝑟 − 𝑘𝑣𝑔𝑧𝑔𝑙 − 𝑘𝑣𝑔𝑧𝑔𝑟 = 0 

(2a) 

𝐽𝑣𝜃̈𝑣 + 2(𝑘𝑣𝑔𝑙2
2 + 𝑘𝑣𝑏𝑙1

2)𝜃𝑣 + 𝑘𝑣𝑏𝑙1𝑧𝑏𝑙 − 𝑘𝑣𝑏𝑙1𝑧𝑏𝑟 + 𝑘𝑣𝑔𝑙2𝑧𝑔𝑙 …

− 𝑘𝑣𝑔𝑙2𝑧𝑔𝑟 = 0 

(2b) 

𝑚𝑏𝑙𝑧̈𝑏𝑙 + (𝑘𝑣𝑏 + 𝑘𝑏𝑠)𝑧𝑏𝑙 − 𝑘𝑣𝑏𝑧𝑣 + 𝑘𝑣𝑏𝑙1𝜃𝑣 − 𝑘𝑏𝑠𝑧𝑠𝑙 = 0 
(2c) 

𝑚𝑏𝑟𝑧̈𝑏𝑟 + (𝑘𝑣𝑏 + 𝑘𝑏𝑠)𝑧𝑏𝑟 − 𝑘𝑣𝑏𝑧𝑣 − 𝑘𝑣𝑏𝑙1𝜃𝑣 − 𝑘𝑏𝑠𝑧𝑠𝑟 = 0 
(2d) 

𝑚𝑔𝑙𝑧̈𝑔𝑙 + (𝑘𝑣𝑔 + 𝑘𝑔𝑑)𝑧𝑔𝑙 − 𝑘𝑣𝑔𝑧𝑣 + 𝑘𝑣𝑔𝑙2𝜃𝑣 − 𝑘𝑔𝑑𝑧𝑑𝑙 = 0 

(2e) 

𝑚𝑔𝑟𝑧̈𝑔𝑟 + (𝑘𝑣𝑔 + 𝑘𝑔𝑑)𝑧𝑔𝑟 − 𝑘𝑣𝑔𝑧𝑣 − 𝑘𝑣𝑔𝑙2𝜃𝑣 − 𝑘𝑔𝑑𝑧𝑑𝑟 = 0 

(2f) 

𝑚𝑠𝑙𝑧̈𝑠𝑙 + (𝑘𝑏𝑠 + 𝑘𝑠 + 𝑘𝑠𝑑)𝑧𝑠𝑙 − 𝑘𝑏𝑠𝑧𝑏𝑙−𝑘𝑠𝑧𝑠𝑚 − 𝑘𝑠𝑑𝑧𝑑𝑙 = 0 
(2g) 

𝑚𝑠𝑚𝑧̈𝑠𝑚 + 2(𝑘𝑠)𝑧𝑠𝑚 − 𝑘𝑠𝑧𝑠𝑙 − 𝑘𝑠𝑧𝑠𝑟 = 0 
(2h) 

𝑚𝑠𝑟 𝑧̈𝑠𝑟 + (𝑘𝑏𝑠 + 𝑘𝑠 + 𝑘𝑠𝑑)𝑧𝑠𝑟 − 𝑘𝑏𝑠𝑧𝑏𝑟−𝑘𝑠𝑧𝑠𝑚 − 𝑘𝑠𝑑𝑧𝑑𝑟 = 0 
(2i) 

𝑚𝑑𝑙𝑧̈𝑑𝑙 + (𝑘𝑠𝑑 + 𝑘𝑑 + 𝑘𝑔𝑑)𝑧𝑑𝑙 − 𝑘𝑠𝑑𝑧𝑠𝑙 − 𝑘𝑔𝑑𝑧𝑔𝑙 = 𝑘𝑑𝑧1 

(2j) 

𝑚𝑑𝑟𝑧̈𝑑𝑟 + (𝑘sd + 𝑘𝑑 + 𝑘𝑔𝑑)𝑧𝑑𝑟 − 𝑘𝑠𝑑𝑧𝑠𝑟 − 𝑘𝑔𝑑𝑧𝑔𝑟 = 𝑘𝑑𝑧2, 

(2k) 

where 𝑧̈ and z are the dynamic acceleration and displacements of the 

masses, and 𝜃̈ and θ are the dynamic rotational acceleration and 

displacements, with the other subscripts having the same meaning as 

defined before. Subscripts 1 and 2 in Eqns. (2j) and (2k) denote the 

excitation index corresponding to the dynamic motions applied at the 

spindle masses. The corresponding system parameters are summarized 

in Table 1. All spring elements in the lumped system are assumed to 

be damped modeled by a complex valued stiffness, as given by Eq. (1), 

where γ is the assumed loss factor. For instance, γ is assumed to be 1% 

and 3% for the subframe and suspension springs, respectively, as these 

are typically lightly damped. The γ values for the bushing stiffness and 

spindle stiffness are assumed to be 10% similar to the finite element 

model. Ignoring structural damping in the system, the system 

equations can be written in the form as follows, where 𝑀 is the mass 

matrix, 𝐾 is the stiffness matrix, 𝑧 is the displacement vector, and 𝐹 is 

the excitation force/moment vector: 

𝑀 𝑧̈ + 𝐾 𝑧 = 𝐹. 

(3) 

 

The real eigensolution of Eq. (3) is computed using the values in Table 

1, and the predicted natural frequencies of the system are 11.1, 21.2, 

74.0, 74.0, 131.3, 162.2, 203.5, 377.4, 383.1, 516.9 and 517.6 Hz. It is 

observed that the low frequencies (below 30 Hz) are dominated by the 

vehicle body modes (modes 1 and 2), and the higher frequencies 

(beyond 350 Hz) are dominated by the bushing masses as expected. In 

particular, modes 5 (131.3 Hz), 6 (162.2 Hz) and 7 (203.5 Hz) are 

dominated by the three subframe mass element motion. Specifically, 

modes 5 and 7 are affected by the subframe mass msm, (representative 

of the subframe cross members), and mode 6 is influenced by the other 

two subframe masses msl and msr. 

Table 1: Parameters for the lumped vehicle model of Fig. 7. 

Parameter (units) Value Parameter (units) Value 

mv (kg) 240  kvb, kbs  (N/mm) 5x104  

mbl (kg) 0.98  ksd, kd  (N/mm) 3x104  

mbr (kg) 0.98  ks, kvg, kgd  (N/mm) 5x102  

mgl (kg) 0.75  γvb, γbs, γsd, γd 0.1 

mgr (kg) 0.75  γs 0.01 

msl (kg) 8  γgd, γvg 0.03 

msm (kg) 8    

msr (kg) 8    

mdl (kg) 30    

mdr (kg) 30    

Iv (kg-m2) 194   

 

In addition to capturing the first two natural frequencies of the 

subframe in the free-free boundary conditions, the lumped model also 

successfully captures the natural frequencies of the subframe under 

realistic boundary conditions. However, the modes from the subframe 

lumped model only approximate the vertical deflections of the flexural 

modes. Since this 11-degree-of-freedom model captures the modal 

properties reasonably well, it will be used to study the subframe 

dynamics under dynamic excitation conditions. 

Forced response analysis using real 

eigensolutions 

The steady-state harmonic response of the lumped model is computed 

by applying sinusoidal displacement excitations z1 and z2 (of unit 

amplitude but varying phase), where subscripts 1 and 2 denote the 

excitation index at the spindle masses mdl and mdr, respectively. The 

system responses are computed for two limiting cases of displacement 

excitations at the left and right spindles: (i) equal in-phase excitations 

(z1 = z2) and (ii) equal out-of-phase excitations (z1 = - z2). Due to left-

right symmetry in the system, the steady-state accelerations of the left 

and right masses of the suspension springs, bushings, subframe and 

spindle are identical. The subframe accelerations for two input 

excitation phasing cases are illustrated in Figs. 8 and 9. Resonance 

peaks are observed at 130 and 204 Hz and an anti-resonance around 

190 Hz for the in-phase excitation. In contrast, for the out-of-phase 

excitation, a resonance peak occurs around 163 Hz, corresponding to 

mode 6, while modes at 130 Hz and 204 Hz are not excited. These 

preliminary results suggest that large variations in response can occur 

due to phasing between excitations at the spindles. This is analyzed 

further using the modal expansion theorem [12]. The solution to Eq. 

(3) is written as a linear combination of vibration modes of the system 

as: 
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𝑧(𝑡) = 𝜂1(𝑡)𝜙
(1) + 𝜂2(𝑡)𝜙

(2) + ⋯+ 𝜂11(𝑡)𝜙
(11), 

(4) 

  

where ηi(t) are the modal participation coefficients for i = 1, 2, 3,…..11 

and 𝜙(𝑖) denotes the ith modal vector, which is assembled into a modal 

matrix as: 

𝜙 = [𝜙(1) 𝜙(2) 𝜙(3) 𝜙(4) … .𝜙(11)]. 

(5) 

Rewrite Eqs. (4) and (5) as follows, where 𝜂(𝑡) =

[𝜂1(𝑡) 𝜂2(𝑡)…… . . 𝜂11(𝑡)]
𝑇 and the superscript T denotes transpose, 

𝑧(𝑡) = 𝜙 𝜂(𝑡). 

(6) 

Figure 8: Computed acceleration spectra at the subframe left mass msl, (𝐿𝑧̈, dB 

re 1.0g rms) using the lumped vehicle model of Fig. 2 shown at 1-Hz resolution: 

(a) results for in-phase ( , 0o) and out-of-phase (---, 180o); (b) hatch plot 

representation of phasing variations; (c) difference between maximum and 

minimum acceleration response at each frequency (Δ𝐿𝑧̈, dB). 

Further define the acceleration vector as:  𝑧̈(𝑡) = 𝜙 𝜂̈(𝑡). The force 

vector in the modal domain, 𝑄 is defined as: 

𝑄 = 𝜙𝑇𝐹(𝑡), 

(7) 

where 𝐹(𝑡) = [0 0 0 0 0 0 0 0 0 𝐹1 𝐹2]
𝑇, with F1 and F2 denoting 

dynamic force excitations at the left and right spindles. Using Eqs. (6) 

and (7), Eq. (3) can be rewritten in terms of uncoupled, undamped 

differential equations of second order: 

𝜂̈(𝑡) + [⋱ Ω𝑖
2 ⋱]𝜂(𝑡) = 𝑄(𝑡), 

(8) 

where Ωi denotes the ith natural frequency of the system. The steady-

state harmonic response for undamped oscillators in the modal domain 

is given by: 

𝜂𝑖 =
𝑄𝑖

Ω𝑖
2 − 𝜔2

  . 

(9) 

The steady-state response in the physical domain is then computed 

using Eq. (6), which is expanded as follows: 

𝑧𝑣 = 𝜙𝑣
(1)

𝜂𝑣 + 𝜙𝑣
(2)

𝜂𝜃 + ⋯ 𝜙𝑣
(11)

𝜂𝑑𝑟 

         ⋮          ⋮              ⋮         ⋮ 

𝑧𝑑𝑟 = 𝜙𝑑𝑟
(1)

𝜂𝑣 + 𝜙𝑑𝑟
(2)

𝜂𝜃 + ⋯ 𝜙𝑑𝑟
(11)

𝜂𝑑𝑟. 

(10) 

The acceleration response is subsequently calculated by the 

relation 𝑧̈𝑖 = −𝜔2𝑧𝑖. From Eq. (10), the harmonic response is 

dependent on both the modal matrix 𝜙 and the modal responses 𝜂. To 

study this further, each term of Eq. (10) is plotted individually and 

compared with the total physical response; minimal damping is 

assumed in each case to ensure bounded responses at the resonances. 

Fig. 10(a, b) compares the computed accelerations (with a frequency 

resolution of 1 Hz) at the left subframe mass msl for the in-phase and 

the out-of-phase excitations. Up to 300 Hz, the motion terms 

associated with mv (only θv), mbl, mgl, msl, msr and mdl are dominant for 

in-phase excitation. In contrast, the motion terms associated with mv 

(only zv), mbr, mgr, msm and mdr are dominant for the out-of-phase case. 

In order to further examine why certain modes are not excited for a 

particular excitation, the modal force vector is studied by expanding 

Eq. (7) as: 

𝑄 = [𝜙(1) 𝜙(2) 𝜙(3) 𝜙(4) … .𝜙(11)]𝑇

[
 
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
0
𝐹1

𝐹2]
 
 
 
 
 
 
 
 
 
 

 

(11a) 

=

[
 
 
 
 
 
 
 
 
 
 
 𝜙𝑑𝑙

(1)
𝐹1 + 𝜙𝑑𝑟

(1)
𝐹2

𝜙𝑑𝑙
(2)

𝐹1 + 𝜙𝑑𝑟
(2)

𝐹2

⋮

⋮

⋮

⋮

𝜙𝑑𝑙
(11)

𝐹1 + 𝜙𝑑𝑟
(11)

𝐹2]
 
 
 
 
 
 
 
 
 
 
 

. 

(11b) 

Observe from Eq. (11b) that the terms influencing the modal force 

vector are the eigenvectors corresponding to the left and right spindle 

masses mdl and mdr. It is clear that these eigenvectors are in-phase with 
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each other at modes 2, 3, 5, 7, 9 and 10 and out-of-phase with the other 

modes as shown in Table 2. This implies that for an in-phase excitation 

(F1 = F2), the modes 1, 4, 6, 8 and 11 (out-of-phase modes) would lead 

to a cancellation of forces; in contrast, for an out-of-phase excitation 

(F1 = -F2), the modes 2, 3, 5, 7, 9 and 10 (in- 

 
Figure 9: Computed acceleration spectra at the subframe middle mass msm, (𝐿𝑧̈, 

dB re 1.0g rms) using the lumped vehicle model of Fig. 2 shown at 1-Hz 

resolution: (a) results for in-phase ( , 0o) and out-of-phase (---, 180o); (b) 

hatch plot representation of phasing variations; (c) difference between 

maximum and minimum acceleration response at each frequency (Δ𝐿𝑧̈, dB). 

phase modes) would lead to a cancellation of forces. The modal forces 

are as shown in Table 3, and this explains why only 6 modes are 

present in Fig. 10(a) and the remaining in Fig. 10(b). 

 
Figure 10: Computed acceleration spectra of modal masses corresponding to 

the lumped vehicle model with minimal possible damping: (a) In-phase 

excitation case; (b) Out-of-phase excitation case:―, 𝑧̈𝑠𝐿; ――, 𝜙𝑠𝐿𝜂̈𝑧𝑣; – –, 

𝜙𝑠𝐿𝜂̈𝜃𝑣; …, 𝜙𝑠𝐿𝜂̈𝑏𝐿;    ∗      , 𝜙𝑠𝐿𝜂̈𝑏𝑅;  –□– , 𝜙𝑠𝐿𝜂̈𝑔𝐿; – –□–, 𝜙𝑠𝐿𝜂̈𝑔𝑅 –𝜙𝑠𝐿𝜂̈𝑠𝐿; –o ,–׀–;

, 𝜙𝑠𝐿𝜂̈𝑠𝑀; – –׀– ,  𝜙𝑠𝐿𝜂̈𝑠𝑅; –◊–, 𝜙𝑠𝐿𝜂̈𝑑𝐿; – –◊– , 𝜙𝑠𝐿𝜂̈𝑑𝑅 . 

Table 2: Real and complex eigenvectors for left and right spindles. 

 

Real 

eigen-

values 

Real eigenvectors  
Complex eigenvalues 

Ω2 = 𝜔𝑛
2(1 + 𝑗𝜂) 

Complex eigenvectors (given 

non-proportional damping) 

Mode 
ωn / 2π 

(Hz) Left 

𝜙𝑑𝑙 

Right 

𝜙𝑑𝑟 

ωn / 2π 

(Hz) 
η 

Left 

𝜓̃𝑑𝑙 

Right 

𝜓̃𝑑𝑟 

1 11.1 0.002 -0.002 11.1 0.093 

-0.021 

+0.003j 

-(-0.021 

+0.003j) 

2 21.1 0.005 0.005 21.1 0.099 

0.003 

-0.068j 

0.003 

-0.068j 

3 82.2 0.003 0.003 82.2 0.030 

-0.002 

+0.001j 

-0.002 

+0.001j 

4 82.2 -0.002 0.002 82.2 0.030 

0.001 

-0.001j 

-(0.001 

-0.001j) 

5 129.9 0.083 0.083 130.0 0.084 

0.342 

+0.023j 

0.342 

+0.023j 

6 160.5 0.114 -0.114 160.5 0.087 

0.573 

+0.412j 

-(0.573 

+0.412j) 

7 200.5 -0.08 -0.08 200.6 0.039 

-0.272 

+0.010j 

-0.272 

+0.010j 

8 376.0 0.06 -0.06 376.0 0.092 

0.254 

+0.005j 

-(0.254 

+0.005j) 

9 381.3 0.056 0.056 381.2 0.087 

-0.219 

-0.025j 

-0.219 

-0.025j 

10 515.6 -0.010 0.010 515.6 0.099 

-0.004 

+0.011j 

-(-0.004 

+0.011j) 

11 516.2 0.010 0.010 516.2 0.099 
-0.015-

0.0004j 

-0.015 

-0.0004j 

 

Forced response analysis using complex 

eigensolutions 

The effect of damping is examined next by evaluating complex 

eigensolutions. The system equations are of the form similar to Eq. (7), 

except here 𝐾 is a complex-valued stiffness matrix with elements of 

the form k(1+iγ) as is assumed in the finite element model.  The 

complex eigenvalue problem is solved first to obtain the mass 

normalized complex eigenvectors  𝜓̃. Like the previous section, the 

modal expansion principle is applied to rewrite Eq. (3) as: 

𝑴 𝝍̃ 𝜼̈ + 𝑲̃ 𝝍̃ 𝜼 = 𝑭. 

(12) 

Pre-multiplying Eq. (12) by the Hermitian transpose (superscript HT) 

of the complex modal matrix 𝜓̃ to yield: 
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𝝍̃𝑯𝑻𝑴 𝝍̃ 𝜼̈ + 𝝍̃𝑯𝑻𝑲̃ 𝝍̃ 𝜼 = 𝝍̃𝑯𝑻𝑭 , 

(13) 

which upon simplification yields 11 decoupled equations as:  

𝜼̈  + [⋱ 𝝀̃𝒊
𝟐 ⋱]𝜼 = 𝑸, 

(14) 

where 𝜆̃𝑖
2 is the ith complex eigenvalue for this system and 𝑄 = 𝜓̃𝐻𝑇𝐹. 

The steady-state harmonic solution to each of the decoupled equations 

of motion in Eq. (14) is given as follows, where i =1, 2, 3… 11: 

𝜂𝑖 =
𝑄𝑖

𝜆𝑖
2 − 𝜔2

 . 

(15) 

Table 3. Modal force vectors for in-phase and out-of-phase cases. 

Mass element in 

Fig. 7 

Vector for in-phase 

case 

Vector for out-of-phase 

case 

mv 0 2𝜙𝑑𝑙
(1)

𝐹1 

mθ 2ϕ𝑑𝑙
(2)

𝐹1 0 

mbl 2ϕ𝑑𝑙
(3)

𝐹1 0 

mbr 0 2𝜙𝑑𝑙
(4)

𝐹1 

mgl 2ϕ𝑑𝑙
(5)

𝐹1 0 

mgr 0 2𝜙𝑑𝑙
(6)

𝐹1 

msl 2𝜙𝑑𝑙
(7)

𝐹1 0 

msm 0 2𝜙𝑑𝑙
(8)

𝐹1 

msr 2𝜙𝑑𝑙
(9)

𝐹1 0 

mdl 2𝜙𝑑𝑙
(10)

𝐹1 0 

mdr 0 2𝜙𝑑𝑙
(11)

𝐹1 

 

The steady-state physical response of the damped system is then 

calculated using a formula similar to Eq. (6).  Like the undamped case, 

each term of the response is compared against the total physical 

domain response. The addition of damping reduces the amplitude of 

the resonant peaks as expected; only 6 modes participate for the in-

phase case, and the remaining 5 modes participate for the out-of-phase 

case, as observed in the undamped case. The eigenvectors 

corresponding to the spindle masses are analyzed, and the 

corresponding force vectors Qi are found to be similar to the minimally 

damped case. From Table 2 it can also be observed that due to the left-

right symmetry in the system, the eigenvectors corresponding to mdl 

and mdr are always equal in magnitude and remain unaffected by the 

damping.  The dynamic forces at the modes either add or cancel each 

other out to produce modal forces as reported in Table 3, explaining 

the participation of the modes and excitation phasing for different 

excitation cases. Additionally, the harmonic responses are studied for 

3 additional phase angles between 0 and 180 degrees between the left 

and right spindles, given equal amplitudes of excitation. It is expected 

that changing the excitation phasing would directly influence the way 

the modes participate, similar to what was observed with the in-phase 

and out-of-phase cases. 

Next, the acceleration hatch plots at the subframe left mass mbl are 

displayed in Fig. 11 for two cases: (i) only the in-phase and out-of-

phase responses and (ii) for 5 phasing cases (0, 45, 90, 135, 180 

degrees). The in-phase and out-of-phase responses overlap with the 

hatch plots using all five phasing cases, with the exception of a few 

small frequency bands. This implies that the in-phase and the out-of-

phase cases are sufficient to predict the upper and lower bounds of 

harmonic responses. 

 

Figure 11: Comparison between in-phase and out-of-phase hatch plots against 

all phasing hatch plots for the lumped vehicle model: , in-phase and out-

of-phase;  , all phasing cases. 

Forced response from finite element model 

under harmonic excitation 

Forced response studies are conducted using the reduced order finite 

element model. Five cases of excitation phase differences (0, 45, 90, 

135 and 180 degrees) are considered for this finite element model. 

Upon comparing the hatch plots in Fig. 12, it is observed that the 

response from the in-phase and out-of-phase cases encompass all the 

other phasing cases. Fig. 13(a) displays the spectra for the vertical 
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Figure 12: Comparison between in-phase and out-of-phase hatch plots against 

all phasing hatch plots for the acceleration spectra (𝑧̈, m/s2) at location 1 on the 

subframe from finite element analyses: , in-phase and out-of-phase case; 

, all phasing cases. 

acceleration response at location 1 of the subframe for both in-phase 

and out-of-phase cases. Like Fig. 3(b), Fig. 13(b) is a hatch plot where 

the upper and lower limits are formed by computing the maximum and 

minimum responses from the in-phase and out-of-phase excitation 

cases (with a 1-Hz resolution). Note that the input phasing significantly 

affects the acceleration responses at the subframe with variations as 

large as 30 dB from 180 to 250 Hz, as shown in Fig. 13(c). These 

results correlate reasonably well with variations predicted by the 

lumped model, thus verifying the minimal order vehicle model. 

 

Figure 13: Computed acceleration spectra from finite element model (𝐿𝑧̈, dB re 

1.0 g rms) at location 1 on the subframe for different phasing cases shown at 2-

Hz resolution: (a) phase variations: , 0o;  ----,180o; (b) hatch plot 

representation of phasing variations; (c) difference between maximum and 

minimum acceleration response at each frequency. 

Comparison of predicted and measured results 

Since the tires and wheels are being ignored in this model, measured 

operational displacements at a roller speed of 80 kph are used as 

excitations and implemented as follows: 1. First, the dynamic 

excitations are described by harmonic vertical displacements 𝑧1 and 

 𝑧2 of unit amplitudes at the left and right spindle centers at any 

frequency of calculation; 2. A steady-state dynamic analysis (with the 

same damping assumptions as before) is over the frequency range of 

30-300 Hz; 3. Assuming the linear system theory, the corresponding 

harmonic acceleration responses are calculated at the body connections 

and normalized by the excitation acceleration amplitudes 

(−𝜔2𝑧1 𝑜𝑟 − 𝜔2𝑧2) at each frequency; 4. The normalized acceleration 

response is then scaled by the acceleration measured at the spindle 

center for one of the runs, 𝑧̈𝑑, from the chassis dynamometer 

experiment. This is needed to compare the computed responses with 

measurements. 

The predicted acceleration responses from the finite element model are 

now compared with the measurements. The computed hatch plots from 

the in-phase and out-of-phase responses are compared with 

measurements in Fig. 14 at locations 1, 2 and 3 on the subframe. The  

 

 

Figure 14: Comparison of measured and computed vertical acceleration spectra 

(𝐿𝑧̈ , dB re 1.0g rms) at different locations on the subframe (hatch plot using in-

phase and out of phase cases): (a) location 1; (b) location 2; (c) location 3:  -o-

, Measured response; , Computed response from the finite element 

model. 
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measured spectral points are observed to fall within the computed 

hatch plots with discrepancies at some narrow-frequency bands, 

suggesting that the calculation method yields a reasonable prediction. 

However, in Fig. 14(b), note that the simulation provides resonant 

peaks well, but the computations do not fall within the measured range 

at other frequencies. This could imply that damping values in the finite 

element model need to be refined, as this component has a dominant 

participation in this particular frequency range of study. 

The finite element operational deflection shapes are examined to 

visualize the subframe dynamics corresponding to the response 

variations associated with excitation phasing.  Based on average 

variations due to phasing at six different locations on the subframe, 

two particular frequencies (220 Hz and 236 Hz) are chosen – one 

where variations due to phasing are large and the second where 

variations are relatively small. Four views (top, front, left and right) 

are displayed for the deflection shapes, and a comparison is made 

between the in-phase and out-of-phase deflection shapes in Fig. 15.  

The subframe has small deflections for the in-phase case (Fig. 15(a)), 

whereas the subframe exhibits a large rocking motion when viewed 

from the top for the out-of-phase condition shown in Fig. 15(b).  In 

contrast, the subframe has minimal variation in the deflection shapes 

for both in-phase and out-of-phase excitation at 236 Hz. Overall, the 

participation of the subframe is qualitatively similar to that observed 

experimentally, suggesting that the ODS displays are an efficient way 

to evaluate subframe dynamics. 

 

 

Figure 15: Calculated operational deflection shape of the subframe from finite 

element simulation at 220 Hz: (a) in-phase; (b) out-of-phase: ●, locations on the 

subframe where deflections are calculated; □, trajectory starting point (at t = 0); 

―, trajectory. 

Conclusion 

This article has contributed to the state-of-the-art by providing an in-

depth investigation and explanation of the role of the left-right rolling 

excitation phasing at the spindles in the variability of automotive 

structure-borne vibration and noise (over the lower-frequency regime). 

Unlike prior literature, by limiting the operational experiments on a 

single vehicle, relationships between spindle excitations and run-run 

variations could be analyzed using a deterministic approach. A 

minimal order lumped parameter model of the rear-half vehicle, 

capturing the subframe transfer path, is successfully developed and is 

utilized to study the contribution of the subframe dynamics under 

dynamic loading conditions. Through the forced response analysis of 

this lumped parameter model using a deterministic modal expansion 

method, it is demonstrated that system vibration modes may cancel or 

add depending upon the left-right magnitude and phasing of 

excitations going into the system through the spindle (i.e., this is a 

deterministic phenomenon), which in turn has variations up to +/- 30 

dB.  In addition to this, both the lumped model and the finite element 

models are consistent in suggesting that two cases of phasing, namely 

in-phase and out-of-phase, are necessary and sufficient to predict a 

range for the system response. Operational deflection shapes have 

successfully been employed to qualitatively compare the variations 

due to phasing observed in the finite element results and the run-run 

variations observed in the steady-state vehicle measurements. This 

suggests that the run-run variations could be significantly influenced 

by the magnitude and phase of the tire-road interactions, which in turn 

control the magnitude and phase at which the excitations travel through 

the suspension system starting at the spindle. As part of future work, 

this deterministic left-right phasing phenomenon could be further 

validated by conducting operational experiments, with focus on 

controlling the excitation phasing. Currently, the post-processing and 

windowing techniques used during data acquisition to compute the 

frequency spectra use as high as 50 averages on data acquired over 25 

seconds to account for the probabilistic nature of the excitations. The 

sensitivity of the run-run variations to the type of signal processing 

(including windowing techniques) needs to be examined in the future. 

In addition, measurements may be acquired over a longer period of 

time, with minimal or no averaging, to study the deterministic nature 

of the excitations. 
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