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a b s t r a c t 

Even though coned disk springs have been used as preload or isolation elements in me- 

chanical design for over a century, prior research has used several simplifying assumptions 

in determining their static load-deflection relationships and their stiffness properties have 

been largely ignored. Accordingly, the entire displacement range is considered in this arti- 

cle, from fully unloaded height to flat height under quasi-static loading conditions. Friction 

is accounted for at the face-to-face disk spring contacts and at the disk spring edge-to- 

surface contacts, but is ignored in edge-to-edge contacts. New experimental results for a 

single coned disk element, the primary parallel stack configuration, and two primary series 

stack configurations are presented. Measured load-deflection characteristics are analyzed 

in the context of newly defined nine distinct regimes that are motivated by the physics. 

Hysteresis curves are also examined and compared with a refined load-deflection relation 

with interfacial and edge friction coefficients. Finally, a continuously nonlinear stiffness ex- 

pression is analytically derived, which matches well with measurements but only over a 

limited range of displacements. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Coned disk springs (as shown Fig. 1 a), a subset of the diaphragm spring family, have been in use in machine design (such

as preload elements) for over a century. Since they are highly customizable at an element level as attested to by a myriad

of diaphragm springs produced [1–5] , the stackable nature of disk springs allows for easy modification of the gross stiffness

and damping parameters of a stack. The inherent adaptability of the disk spring’s stiffness is especially unique because it

can be made positive, zero, or negative [3,5–7] . The nonlinear stiffness exhibited by quasi-zero stiffness mechanisms has

been conceptually found to be advantageous for several vibration isolation studies [8–13] though the disk spring is not ex-

plicitly mentioned. The literature focusing on disk springs is very sparse and primarily limited to static analyses presented

from a design viewpoint [4,6–7,14–19] . In particular, the seminal paper of Almen and Laszlo [6] established the disk spring

load-deflection relationship which remains as the theoretical groundwork for most subsequent disk spring research. Almen

and Laszlo [6] , heavily influenced by a simplified problem proposed by Timoshenko [14] , made the following key assump-

tions: (i) the disk spring cross-section is small; (ii) the disk spring cross-section remains constant during the deformation

process, but merely rotates about a neutral point; and (iii) the loads are distributed evenly around the disk spring in an an-
∗ Corresponding author. 

E-mail address: singh.3@osu.edu (R. Singh). 

http://dx.doi.org/10.1016/j.mechmachtheory.2017.06.006 

0094-114X/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.mechmachtheory.2017.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmachtheory
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmachtheory.2017.06.006&domain=pdf
mailto:singh.3@osu.edu
http://dx.doi.org/10.1016/j.mechmachtheory.2017.06.006


514 N.P. Mastricola, R. Singh / Mechanism and Machine Theory 116 (2017) 513–528 

 

 

 

 

 

 

 

Nomenclature 

a Mid-surface outer radius 

b Mid-surface inner radius 

c Neutral circle radius 

E Young’s modulus 

h Cone height 

k Analytically determined stiffness 

k Piecewise nonlinear stiffness 

M Moment 

n Number of springs 

P Spring force resultant 

x Displacement 

α Radii ratio ( a / b ) 

β Cone base angle 

δ Axial spring deflection 

γ End point of stiffness regime 

ɛ Strain 

η Cone height to thickness ratio ( h / t ) 

θ General angle 

κ Slope of linear stiffness model section 

μ Static coefficient of friction 

ν Poisson’s ratio 

σ Stress 

τ Shell thickness 

ϒ Comparison model 

ϕ Relative rotational displace of disk spring cross-section 


 Displacement regime 

ψ Planer angle of disk spring 

Subscripts 

a Outer edge 

b Inner edge 

D Disk spring 

e Edge 

E Experiment 

F Friction (includes friction) 

Flat Related to the disk spring or stack in the flat position 

H Linear helical spring 

L 1 Literature – Ref. [6] 

L 2 Literature – Ref. [19] 

L 3 Literature – Ref. [26] 

n Fundamental 

p Relating to the parallel disk spring contact 

P Manifests due to spring force 

r Radial component 

R 1 Reaction due to radial displacement 

R 2 Reaction due to change in curvature 

t Tangential component 

φ Face or interfacial 

nularly symmetric fashion. Several aspects of the Almen-Laszlo relationship were re-examined by researchers [7,15–16] who

specifically focused on practical design methodology. 

Curti et al. [17–20] noted that Almen and Laszlo correctly assumed that radial stress σ r is negligible (σr = 0) ; never-

theless, radial strain ɛ r was considered to be negligible (ε r = 0) throughout the Almen–Laszlo derivation. Curti and Orlando

[17–18] derived an alternate analytical load-deflection relationship by treating the coned disk spring as a flat plate of small

thickness with a hole and coupling the radial and tangential stresses. Their derivation [17–18] resulted in a load-deflection

expression which differed from the Almen–Laszlo [6] relationship by a multiplicative factor of 1 − ν2 , where ν is Poisson’s

ratio. Subsequently, Curti et al. [19] achieved the same result through a greatly simplified, but more illustrative, means of

correctly applying within a framework similar to that of Almen and Laszlo [6] . 
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Fig. 1. Coned disk spring element: (a) Square-edged element (configuration ϒ1 ); (b) overhead and cross-section view of a coned disk spring with standard 

geometric parameters and load points. Key: force, deformed position of cross-section. Remaining symbols are defined in the text and in the 

Nomenclature section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, only a limited number of experimental studies have been reported in the literature [2,6,17–26] in the con-

text of validation and verification of analytical expressions; however, most measurements data sets were limited to the

midrange displacements such that the initial loading phase and ending stopper phase could be avoided. Also, assumptions

have been made in literature as to the behavior of the disk spring as a singular element or as an entity within a disk spring

stack. Wahl [7] , to the best of the authors’ knowledge, published the first measurement, which included the aforementioned

terminal effects and was accompanied by heuristic comparison to the Almen–Laszlo load-deflection relationship [6] . Curti

et al. [21] made a similar comparison between their experiment and analytical expressions suggested by Almen and Laszlo

[6] as well as Curti et al. [18–19] . Other experimental studies [22–26, 28] have largely focused on characterizing the nature

of friction at the disk spring boundaries and the determination of its effect. 

The influence of disk springs on the dynamics of physical systems has been studied to a much lesser extent. For example,

Bühl [27] characterized the general loss properties of a disk spring stack by determining a damping coefficient using the

logarithmic decrement method for a range of preloads. Ozaki et al. [28] performed quasi-static characterization of disk

spring stacks for the purpose of constructing a computational (finite element) model of the disk spring where both dry

friction and viscous damping were lumped into a general energy dissipation term. Numerical studies, using the proposed

finite element method model, were conducted on a simple mass-spring oscillator and transmissibility curves that exhibited

stiffening behavior were predicted [28–29] . 

To overcome certain voids in the literature, the chief goal of this article is to experimentally and analytically characterize

the nonlinear load-deflection relations and to clarify the stiffness regimes and their transition points. The scope of this paper

is limited to commercially available square-edged disk springs which are stackable in primary configurations as displayed

in Fig. 2 and listed in Table 1 . The entire displacement range is considered, from fully unloaded height to flat height, and

friction will be accounted for at the face-to-face disk spring contacts (in parallel stack configurations) and at the disk spring

edge-to-surface contacts, but will be ignored in edge-to-edge contacts. 

2. Problem formulation 

The focus of this article is confined to the examination of single disk springs and stacks assembled from two disk springs

in the primary stack configurations as shown in Figs. 2 a–c and named in Table 1 . The specific objectives are: first, measure

the full-range load-deflection characteristic of a disk spring and primary stack configurations and analyze them in terms of

their naturally arising transition points and hysteretic behavior; second, propose a refined disk spring load-deflection for-

mulation with edge and interfacial friction and to compare predictions with measurements; and third, examine the stiffness
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Fig. 2. Typical stack configurations using two coned disk elements: (a) parallel (configuration ϒ2 ); (b) inner series (configuration ϒ3 ); and (c) outer series 

(configuration ϒ4 ). Refer to Table 1 for a summary of the configurations analyzed in this article. 

Table 1 

Designations used for stack configurations of 

coned disk springs. a 

Symbol Stack configuration 

ϒ1 Single disk spring ( Fig. 1 ) 

ϒ2 Parallel stack ( Fig. 2 a) 

ϒ3 Inside edge series stack ( Fig. 2 b) 

ϒ4 Outside edge series stack ( Fig. 2 c) 

a The R8 ball bearing disk springs are 

used throughout this article (purchased from 

McMaster-Carr on www.mcmaster.com ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nonlinearity and propose distinct regimes. Full-range load-deflection characteristics of the disk spring and primary stack

configurations (from unloaded height to flat height) are experimentally acquired, under quasi-static loading conditions, us-

ing the apparatus shown in Fig. 3 . The experimental results will be analyzed from a load-deflection perspective (in terms of

transition point location and hysteresis), and in terms of their stiffness characteristics. The stiffness results presented herein

will be compared to the prior literature, including a few studies which use similar nonlinear stiffness characteristics without

the use of disk springs. 

The following classical assumptions [6] for analyzing disk springs will be applied throughout the presented experimental

and analytical work such that the analytical and experimental methods used can draw upon, and be compared with, prior

studies on equal footing — (i) the disk spring cross-section is small; (ii) the disk spring cross-section rotates about a neutral

point and does not deform during the loading or unloading process; and (iii) forces are evenly distributed about the disk

spring edges in an annularly symmetric fashion. Additionally, friction between disk spring edges and the platen faces ( Fig. 3 )

and at interfacial contacts between disk spring faces — configuration ϒ2 ( Fig. 2 a) — will be considered throughout the

analysis. However, the friction at disk spring edge-to-edge contacts is considered negligible. 

3. Analytical load-deflection relationships of primary disk spring stacks 

The Almen–Laszlo load-deflection relationship [6] for a single disk spring is formulated through the moment equilibrium

condition (with reference to Fig. 1 b) as 

d M P = d M R 1 + d M R 2 , (1) 

where differential moment d M P , arises from the reaction force P , d M R 1 is the radial displacement reaction moment, and

d M R 2 is the reaction moment which manifests from the change in curvature. In Eq. (2) , d M P is expressed in terms of disk

spring thickness τ ; cone base angel β; relative rotational displacement ϕ; planer angle ψ ; and the inner and outer mid-

surface radii a and b , respectively. Note that the simplifying approximations cos ( β − ϕ ) ≈ 1 and sin ( β − ϕ ) ≈ tan ( β − ϕ ) ≈
β − ϕ are applied since both β and ϕ are small. 

d M P = 

P 

2 π
[ ( a − b ) − τ sin ( β − ϕ ) ] · d ψ ≈ P 

2 π
( a − b ) · d ψ. (2) 

Next, d M R 1 and d M R 2 are expressed in the same manner as d M P with the addition of Young’s modulus E and the radii

ratio α, where α = a/b . 

d M R 1 = Eτϕ ( β − ϕ ) 

(
β − ϕ 

2 

)(
a 2 − b 2 

2 

− ( a − b ) 
2 

ln α

)
· d ψ (3) 

http://www.mcmaster.com
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Fig. 3. Quasi-static experiment proposed to measure the load-displacement curve of coned disk springs. Key of components: (1) high resolution LVDT, (2) 

force transducer, (3) upper platen, (4) disk spring or stack, (5) lower platen, (6) centering support assembly, (7) power screw, (8) tensioning support band, 

(9) power screw body, and (10) rigid outer support, where is the line of action of the power screw. 

 

 

 

 

 

 

 

 

 

 

 

 

d M R 2 = 

E τ 3 ϕ 

12 

ln α · d ψ (4)

Substitution of Eqs. (2) –(4) into Eq. (1) , with the axial spring deflection, yields the well-known Almen–Laszlo relationship

[6] 

P L 1 ( δ) = 

Eδπ(
1 − ν2 

)
a 2 

(
α

α − 1 

)2 
[
τ ( h − δ) 

(
h − δ

2 

)(
α + 1 

α − 1 

− 2 

ln α

)
+ 

τ 3 ln α

6 

]
. (5)

Using two separate methods, the Almen–Laszlo expression was simplified by Curti et al. [17–19] to 

P L 2 ( δ) = 

Eδπ

a 2 

(
α

α − 1 

)2 
[
( h − δ) 

(
h − δ

2 

)(
α + 1 

α − 1 

− 2 

ln α

)
τ + 

τ 3 ln α

6 

]
. (6)

Curti et al. [26] modified Eq. (6) to include the edge friction using an analogous method to that used by Almen and

Laszlo [6] , which takes the form 

P L 3 ( δ) = 

P L 2 ( δ) 

1 ∓ μe 
( h −δ+ τ ) 

a −b 

, (7)

where μe is the coefficient of friction at the disk spring edge. Niepage [24] added a term for edge friction and disk spring

face-to-face friction, though this was accomplished by rather tedious algebraic means. 

In this article, Eq. (7) is modified to include face-to-face friction by a more compact method which is a closer analog

to the methods used in prior formulations [6, 17–19, 26] . Hence, the friction between disk spring faces in the parallel

configuration ( Fig. 2 a) and the disk spring edge to surface friction — in the cases of the single disk spring ( Fig. 1 a) or series

stacks ( Figs. 2 b–c) — are accounted for by formulating appropriate differential moment terms, which can be added to Eq. (1) .

Thus, 

d M P = d M R 1 + d M R 2 + d M φF + d M eF , (8)
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Fig. 4. Comparison of prior and proposed analytical formulations. Key: P L 1 ( δ), P L 2 ( δ), P L 3 ( δ) with μe = 0 . 1 (equivalent to P F ( δ) with 

μe = 0 . 1 and μφ = 0 ), P F ( δ) with μe = 0 . 1 and μφ = 0 . 2 , P F ( δ) with μe = 0 . 1 and μφ = 0 . 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where d M φF is the differential moment due to the face-to-face disk spring friction and d M eF is the differential moment due

to the friction between the disk spring edge and its supporting surface. Both d M φF and d M eF may be written in the form of

the other differential moments with the addition of the coefficients of friction between the disk spring faces and the disk

spring edge to surface contact — μφ and μe , respectively — and the number of parallel contacts ( n p ) between disk springs

in a stack as 

d M φF = ±μφ

P cos ( β − ϕ ) n p 
τ
2 

2 π
· d ψ ≈ ±μφ

P n p 
τ
2 

2 π
· d ψ (9) 

and 

d M eF = ±μe P 

2 π
[ ( a − b ) tan ( β − ϕ ) + τ cos ( β − ϕ ) ] · d ψ 

≈ ±μe P 

2 π
[ ( a − b ) ( β − ϕ ) + τ ] · d ψ. (10) 

The more general load-displacement relationship is then found, as shown in Eq. (11) , by applying the small angle ap-

proximations, changing the variables β and ϕ to their linear counterparts h and δ, and substitution into Eqs. (2) –(4) and

Eqs. (9) –( 10 ) into Eq. (8) . 

P F ( δ) = 

P L 2 ( δ) 

1 ∓
[ 

μe ( h −δ+ τ ) + μφ
τ
2 

n p 

a −b 

] (11) 

As should be expected, Eq. (11) does not explicitly depend on the number of disk springs in series since the disk spring

edge-to-edge contacts are being considered to be essentially frictionless rolling contacts and there are only ever two disk

spring edge-to-surface contacts at the terminal ends of the stack. By setting μφ = 0 or n p = 0 , Eq. (11) reduces to P L 3 ( δ)

— the result of Curti et al. [26] as shown in Eq. (7) . Further, Eq. (11) is shown to reduce to P L 2 ( δ), shown as derived by

Curti et al. [19] in Eq. (6) , by setting μe = μφ = 0 ; therefore, Eq. (11) is a further generalization of both aforementioned

formulations. Likewise, the relationships between Eqs. (5) –(6) and Eq. (11) are shown in Fig. 4 with assumed values of μe 

and μφ . An addition of the interfacial friction term does indeed increase the amount of hysteresis, and does so successively

with increasing μφ . As one should expect, Fig. 4 also shows that Eqs. (5) –( 6 ) are incapable of accurately describing the

parallel contacts between disk springs. Eq. (11) will, therefore, be used to assess the role of interfacial friction in hysteresis

of disk springs stacked in parallel. Measurements will be used to quantify the values of both μe and μφ . 

4. Experimental method 

Disk springs are low profile and small footprint devices that, by their nature, are able to produce extreme forces at

relatively low displacements. While these unique qualities have been leveraged considerably in their use as preload devices

[1, 5–7] and show great promise in use as vibration isolation elements [8–13] , the orders of magnitude scale difference
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Fig. 5. Measured load-deflection (normalized) characteristics for four configurations of Table 1 and Figs. 1 and 2: (a) ϒ1 , (b) ϒ2 , (c) ϒ3 , and (d) ϒ4 . Key: 

measured loading and unloading characteristics, computed median characteristic from measurements. 

 

 

 

 

 

 

 

 

 

 

between input displacement and output force make them exceedingly difficult to experimentally evaluate. Likewise, the

physical scale of disk springs also creates unique challenges when attempting to maintain alignment of the disk spring

primary stack configurations ϒ2 , ϒ3 , and ϒ4 ( Figs. 2 a–c) when they are under a load without an external means of alignment.

The final design of the experiment, shown in Fig. 3 , as well as the experimental methods shown herein are similar to those

recently described by Mastricola et al. [30] . As shown previously, the displacement ( δ) of the lower platen is measured by a

ground-fixed high resolution linear variable displacement transformer (LVDT). There are no special requirements of the force

sensor other then it is able to hold tolerance over the large range of spring force ( P ) produced by the disk spring or stack

under test. The functionality of the experiment is verified by the same method outlined in Mastricola et al. [30] . 

5. Measured full-range load-deflection characteristics and comparison with theory 

The measurements obtained from the single disk spring configuration ( ϒ1 ) using the quasi-static test apparatus ( Fig. 3 ),

are shown in Fig. 5 a. These are normalized by the theoretically predicted flattening load P Flat , as derived for a single disk

spring [3] 

P F lat = 

πEh τ 3 

a 2 
(
1 − ν2 

)(
α + 1 

α − 1 

− 2 

ln α

)(
α

α − 1 

)2 

. (12)
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Table 2 

Summary of distinct load-displacement regimes as displayed in Fig. 7 and normalized end transition 

points for four configurations. 

Regime Description (using measurements) Regime end transition points (normalized), δ/ h 

ϒ1 ϒ2 ϒ3 ϒ4 


1 Initial engagement 0 .0505 0 .0617 0 .0255 0 .0179 


2 Transition to analytical behavior 0 .1515 0 .1724 0 .0805 0 .0419 


3 Analytical behavior 0 .6402 0 .4896 0 .2612 0 .2431 


4 Transition into primary plateau 0 .7633 0 .8409 0 .6618 0 .5979 


5 Primary plateau 0 .8431 0 .9686 0 .8503 0 .7593 


6 Transition into secondary plateau – – – 0 .8470 


7 Secondary plateau – – – 0 .8947 


8 Transition into stopper 0 .9592 1 .037 0 .9387 0 .9367 


9 Stopper (end point at P/ P Flat = 3 ) 1 .023 1 .068 0 .9822 1 .006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As one should expect, disk springs in parallel ( Fig. 2 a) will add just as two linear springs with a negligible increase in

the amount of deflection required. As such, the measured load-displacement characteristics of configuration ϒ2 ( Fig. 5 b)

are normalized by 2 P Flat . Due to the nature of disk springs, series stacks ( Figs. 2 b–c) will have the same flattening load

as a single disk spring; however, they will require twice the deflection. Thus, the load-deflection measurements obtained

from configurations ϒ3 and ϒ4 are also normalized by P Flat and then displayed in Figs. 5 c and 5 d, respectively. Further, the

operating deflections of ϒ1 and ϒ2 ( Figs. 5 a and 5 b, respectively) are normalized by h such that δ/ h = 1 . From the pred-

icating geometric restriction, the domains of configurations ϒ3 and ϒ4 ( Figs. 5 c and 5 d, respectively) are normalized by

2 h . A consistent method is determined in order to isolate the load-deflection characteristics from extraneous data by using

clear landmarks in the measurements that are indicative of the disk spring, or stack, making first contact with the force

sensor and at the point of total flatness. The load-deflection characteristics appear to be comprised of several continuous

nonlinear regimes (leading up to the point of impending flatness) and one discontinuous nonlinear regime (the so-called

stopper effect witnessed at the point of impending flatness) for the characteristics obtained from configurations ϒ1 , ϒ2 ,

and ϒ3 ( Figs. 5 a–c). However, there are marked changes in the load-deflection characteristic of configuration ϒ4 ( Fig. 5 d), in

which several additional regimes are observed. While it could be argued that the manifestation of extra regimes is a mere

aberration that could easily be disregarded, they do arise in several different combinations of disk springs over multiple

tests. The load-deflection characteristics shown in Fig. 5 emerge as the clear typical characteristics for their respective con-

figurations through the testing of several different disk spring pairs. However, throughout the measurements, it has been

found that a small number of disk spring pairs produce atypical curves (shown in Fig. 6 ). The inside series and the more

unusual outside series load-deflection characteristics, Figs. 6 b and 6 d, respectively, show two crossings of the unloading and

loading curves. This shows, for the majority of the displacement range, that these particular pairs produce higher forces

during the unloading phase rather than the loading phase when in configurations ϒ3 and ϒ4 . 

Albeit possible by observation to make the assertion that there are several continuous nonlinear regimes, the majority

of their transition points are, at best, indistinct. Initially, two numerical derivatives were computed with the idea that their

zero-crossings or inflection points would be at or near the transition points; however, this was quickly discarded because,

even after smoothing of the resulting derivatives, the fidelity of this method did not hold from measurement to measure-

ment. However, since the majority of the load-deflection characteristics have smooth transitions between nonlinear regimes,

this method was also rejected. In essence, both of the attempted methods for locating the regime transition points failed

due to the fact that there are few distinct landmarks in the load-deflection characteristic that can be utilized for a consistent

determination of the regime transition; therefore, it is imperative to impose a quasi-fixed reference to which the measured

data could be compared. As a reference, P L 2 ( δ) is chosen for use with the median load-deflection characteristic calculated

from the measurement ( Fig. 5 ). For the task at hand, a distinct regime is considered a section of the measured characteristic

wherever it deviates in a significant manner from the analytical curve. The segments that deviate from the analytical curve

are treated in a quasi-linear fashion; thus, tangent lines are constructed on the measured characteristic in order to deter-

mine the transition points between two quasi-linear continuous (nonlinear) regimes. In essence, this creates a piecewise

nonlinear function since all aspects of the measurements cannot be captured in a single expression; however, the resultant

is still smooth and continuous in nature. 

Applying the previously mentioned method to the median load-deflection characteristic of configuration ϒ1 ( Fig. 5 a), six

load-deflection regimes are observed, as clearly depicted in Fig. 7 a. Key results are summarized in Table 2 . Regimes (or

transitions) 
1 to 
3 , 
5 , and 
8 to 
9 (reference Table 2 ) are called the principal regimes since they are found in all

configurations. Note that P L 2 ( δ) is offset during the initial regimes 
1 and 
2 . This is not all together unexpected due to

the classical Almen–Laszlo [6] assumption that the loads are evenly distributed about the edges of the disk spring which

implies that at the beginning of the curve the disk spring has sufficient preload to bring the edges of the disk spring into

even and complete contact. Conversely, these initial regimes, although not reported as such, are consistent with limited

experimental data that has been reported in the prior literature [7, 19, 21, 23, 27] . In particular, Wahl [7] , only showing data

from a parallel stack, made the assertion that the initial regimes were caused by the flattening of irregularities between
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Fig. 6. Variations in load-deflection characteristics due to disk spring pairings: (a) ϒ2 , (b) ϒ3 , (c) ϒ4 — variation of standard form, (d) ϒ4 — variation 

produced by a poorly matched pair. Key: measured loading and unloading characteristics, computed median characteristic from measurements, 

loading-unloading cross point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

disk springs; however, as shown in Fig. 7 , this behavior is exhibited by all configurations under consideration. Hence, it is

reasonable to hypothesize that regimes 
1 and 
2 arise from slight asymmetries or irregularities of the disk spring’s load

bearing edges in configurations other than ϒ2 . Regime 
3 , as shown in Fig. 7 a, is reasonably approximated by the analytical

curve; however, there is a strong divergence between theory and experiment when the load-defection characteristic plateaus

(regime 
5 ). Likewise, 
8 , and 
9 are not accounted for by the analytical expression because the assumption is made that

the disk spring is not constrained in the vertical direction and would be allowed to travel such that ϕ < 0, which is seldom

found in practical application due to the fixture considerations. 

In the load-displacement measurements from configurations ϒ2 and ϒ3 ( Fig. 7 b and 7c, respectively), another transition

regime ( 
4 ) is observed going from 
3 to 
5 . While the length of 
5 is relatively unchanged, there is a marked shortening

of regime 
3 , which may be attributed to yet undescribed interplay between the disk spring elements in the stack. The

load defection characteristic from configuration ϒ4 ( Fig. 7 d), albeit seemingly more complicated due to the arising of three

regimes in addition to the principal regimes, has an elegantly simple explanation. Due to the placement of regimes 
7 and


8 it is possible to make the assertion that one spring in the pair is slightly more compliant than the other. This has the

ramification that the weaker of the paired springs will have an increase in stiffness slightly before the other; hence, the

stiffer spring in the pair will only continue to deflect once the softer spring can carry the appropriate load. 
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Fig. 7. Comparison of measured and analytical load-deflection characteristics and identification of multiple regimes ( 
) for four configurations: (a) ϒ1 , (b) 

ϒ2 , (c) ϒ3 , and (d) ϒ4 . Key: measured (computed median characteristic) from measurement, predicted using P L 2 ( δ) expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Hysteretic force measurements and comparison with theory 

Eq. (11) is used to determine the theoretical hysteretic behavior that should be exhibited over displacement region 
3 .

From prior comparisons made in this article, it has been shown that the best agreement between theory and experiment

is exhibited by configuration ϒ1 . Therefore, it can be assumed that μe determined from this configuration may be applied

to all of the configurations listed in Table 1 since only two disk spring edge-to-surface contacts are seen in any disk spring

stack configuration. For configuration ϒ1 , Eq. (11) is applicable by setting both n p and μφ to zero, and thereby reducing

Eq. (11) to P L 3 ( δ) — Eq. (7) . The friction coefficient at the disk spring’s edge, μe , may now be estimated by varying its value

with comparison to the measured hysteresis loop of configuration ϒ1 . Sufficient agreement in 
3 of ϒ1 is observed between

theoretical and measured hysteresis forces at μe = 0 . 12 , which is consistent for a galvanized steel-steel contact. The result

of tuning μe for the single disk spring configuration (shown in Fig. 8 a) is consistent with agreement shown by Curti et al.

[26] as should be expected. Likewise, as listed in Table 3 , this value of μe is applied to all remaining configurations as shown

in Fig. 8 . Without any further parameter tuning, reasonable agreement is seen in regime 
3 for configurations ϒ3 and ϒ4 .

However, configurations ϒ1 , ϒ3 , and ϒ4 all exhibit a departure of theory from measurement in the transitional regime 
4 ;

much longer transitional regimes are witnessed in both series configurations ( Figs. 8 c and 8 d). Furthermore, after theory and

measurement values diverge for configurations ϒ3 , and ϒ4 , the under-predicting trend is clearly seen from the remaining

displacement regimes. To a much lesser extent, this trend is also seen in configuration ϒ . 
1 
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Fig. 8. Measured and predicted load-displacement characteristics for four configurations of Table 1 and Figs. 1 and 2: (a) ϒ1 , (b) ϒ2 , (c) ϒ3 , and (d) ϒ4 . 

Key: measurement, Eq. (11) prediction. 

Table 3 

Disk spring edge and interfacial surface friction coefficients, 

μe and μφ , respectively, estimated using Eq. (11) , with ref- 

erence to results of Fig. 7 . 

Coefficient of friction Disk spring stack configuration 

ϒ1 ϒ2 ϒ3 ϒ4 

μe 0 .12 0 .12 0 .12 0 .12 

μφ – 0 .49 – –

 

 

 

 

 

 

 

Using a similar tuning method as used for the estimation of μe , μφ is found to be 0.49 ( Table 3 ) using Eq. (11) with

n p = 1 for configuration ϒ2 . The resulting value of μφ is consistent with published values for steel-steel contacts. Comparing

the hysteresis curves of configurations ϒ1 and ϒ2 — Fig. 8 a and b, respectively — a distinct increase in hysteresis is observed.

Since the edge friction is assumed to be equal in all configurations, the approximate 74% increase in hysteresis loop width

between configurations ϒ1 and ϒ2 can be reasonably attributed to the friction forces between the inner and outer surfaces

of the disk spring. The point of comparison between was chosen to be the greatest normalized displacement in the analytical

regime of configuration ϒ . As with the other cases, a distinct divergence between theory and measurement is observed in
2 
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Fig. 9. Measured and predicted hysteresis characteristics for four configurations of Table 1 and Figs. 1 and 2: (a) ϒ1 , (b) ϒ2 , (c) ϒ3 , and (d) ϒ4 . Key: 

measurement, prediction using Eq. (11) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

regime 
4 with the characteristic under-prediction for the remaining regimes. The under prediction of Eq. (11) is partially

due to the manner by which the disk springs are constrained during testing. Eq. (11) , as well as its predecessors, assumes

that the displacement will not stop at the flat position, but will continue until the spring is fully inverted. This physical

limitation creates the prominent stopper effect seen in all cases. Conversely, it can also be said that the theoretical load-

deflection characteristics are, in essence, based on a single continuous nonlinear relationship [6] that is inherently dependent

on the disk spring symmetry, and therefore, cannot be directly modified to account for the appearance of distinct regimes. 

While good agreement between theoretical and measured load-displacement characteristics is apparent ( Fig. 8 ), the hys-

teretic force difference — computed by subtracting unloading and loading curves of measured load-displacement character- 

istics — gives more insight at much finer resolution into what the hysteretic behavior is over each regime. The measured

hysteretic force differences seen in configurations ϒ1 , ϒ3 , and ϒ4 ( Figs. 9 a, 9 c, and 9 d, respectively) are at similar levels,

which lends credence to the assumption made when applying the determined value of μe from configuration ϒ1 to all

other cases, which means that the disk springs and platen surfaces are relatively consistent between trials. The overall hys-

teresis characteristics of configurations ϒ1 and ϒ4 ( Figs. 9 a and 9 d, respectively) are reasonably represented by the force

difference of P F ( δ) with the determined coefficients of friction shown in Table 3 . However, there is a pronounced linear

behavior observed over regimes 
3 and 
4 in the measured characteristic of configuration ϒ3 shown in Fig. 9 c (seen to a

much lesser extent in configurations ϒ1 and ϒ4 ), which is not fully captured by prior or proposed models. As should be

expected from the determination of μφ ( Table 3 ), the hysteretic force difference in configuration ϒ2 is significantly higher
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Fig. 10. Variations in measured hysteresis characteristics produced by disk spring pairings for three configurations of Table 1 and Fig. 2: (a) ϒ2 , (b) ϒ3 , (c) 

ϒ4 — variation of standard form (matched pair), (d) ϒ4 — variation produced with a poorly matched pair. 

 

 

 

 

 

 

 

 

 

 

 

 

than any other configuration. Surprisingly, the hysteretic force difference ( Fig. 9 b) for the parallel stack (configuration ϒ2 ) is

reasonably well predicted over displacement regimes 
2 , 
3 , and 
4 with theory deviating from measurement in the latter

part of regime 
4 . 

The hysteresis characteristics of the atypical load-deflection measurements ( Fig. 6 ) are computed in the same manner as

described previously and the results are shown in Fig. 10 . While significant differences between the load-deflection charac-

teristics of the standard and variation of standard forms of configuration ϒ4 ( Figs. 5 d and 6 c, respectively), deviations be-

tween these cases are minor when comparing their hysteretic force differences ( Figs. 9 d and 10 c, respectively). Conversely,

the atypical load-displacement forms of configurations ϒ3 and ϒ4 ( Figs. 6 b and 6 d, respectively) yield a hysteresis force

difference that has a negative force regime, shown in ( Figs. 10 b and 10 d), which is due to the crossing of the loading and

unloading characteristics for each of these configurations. The atypical load-deflection of configuration ϒ2 ( Fig. 10 a) shows

a pronounced decrease in the hysteretic force from its typical counterpart ( Fig. 9 b), and is observed on all runs of spring

pairs exhibiting these atypical load-deflection characteristics. In actuality, the hysteretic force difference of the atypical con-

figuration ϒ2 ( Fig. 10 a) is closer to the hysteretic force values seen in the standard single disk spring case (configuration ϒ1

in Fig. 9 a). This implies that there is hardly any relative motion between the parallel disk springs in these cases. 
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7. Nonlinear stiffness expression and comparisons with measurement 

The displacement-dependent stiffness expression, as shown below, was presented by Almen and Laszlo [6] and was

determined by differentiating Eq. (5) with respect to δ. 

k L 1 ( δ) = 

Eδπτ(
1 − ν2 

)
a 2 

(
α

α − 1 

)2 (α + 1 

α − 1 

− 2 

ln α

)(
h 

2 − 3 δh + 

3 δ2 

2 

+ t 3 
)

(13) 

To the best of the author’s knowledge, no further stiffness expressions have been presented in literature. Accordingly,

a refined stiffness expression that is in agreement with the assumptions of this study is determined by differentiating

Eq. (6) with respect to δ, and the result takes the following form. 

k L 2 ( δ) = 

Eδπτ

a 2 

(
α

α − 1 

)2 (α + 1 

α − 1 

− 2 

ln α

)(
h 

2 − 3 δh + 

3 δ2 

2 

+ t 3 
)

(14) 

Minor differences between Eqs. (13) and (14) are due to slightly different load-defection relationships on which they are

based. Eq. (14) describes displacement-dependent stiffness characteristics for each configuration of Table 1 . Typical com-

parisons between theoretical and measured stiffness parameters (as computed from the measured load-deflection data) are

displayed in Fig. 11 where the continuous nonlinearity is assumed over the entire displacement range. The poorest agree-

ment between theoretical and measured stiffness, which is largely due to the increasing range of the stiffness characteristic,

is observed with configuration ϒ2 . As shown in Fig. 11 b, theory represents only a limited range in regime 
3 . This inaccu-

racy is redoubled since the range of accuracy in regime 
3 is in the middle; therefore, neither of the adjacent regimes is

successfully predicted for configuration ϒ2 in Fig. 11 b. The initial stiffening, regimes 
1 and 
2 , arises from the incomplete

contact between disk spring and platen for all configurations; this is also observed from the force perspective in Fig. 7 .

For configuration ϒ2 , this effect is amplified because the gaps between parallel disk springs must be closed. To a much

lesser extent, similar agreement is observed with configuration ϒ1 in Fig. 11 a; however, a significant portion of regime 
3 

is predicted acceptably, and the character of regime 
4 is preserved. Much closer agreement between theory and mea-

surement is observed in the load-deflection curves, Fig. 7 a, of configuration ϒ1 . From the stiffness perspective, this added

agreement observed with configuration ϒ1 between theoretical and measured stiffness may be attributed to the stiffness

characteristics changing less quickly over relatively similar actual displacements. Likewise, much closer agreement between

predicted and measured stiffness is observed in both of the series cases — Figs. 11 c and 11 d, respectively. It can be asserted

that this is because configurations ϒ3 and ϒ4 possess close to double the displacement ranges of either configuration ϒ1 

or ϒ2 . It is of note that the load-deflection characteristics of configurations ϒ3 and ϒ4 , Figs. 7 c and 7 d, have only accept-

able agreement past regime 
3 . However, it is important that the character of the load-deflection characteristic is preserved

throughout most of regime 
4 , which is directly responsible for the observed agreement between theory and measurement

based stiffness parameters of configuration ϒ3 over regimes 
3 and 
4 ( Fig. 11 c). Considering the irregular nature of the

load-deflection characteristic of configuration ϒ4 ( Fig. 7 d) compared to the other configurations, its stiffness characteristic

( Fig. 11 d) shows extraordinarily good agreement between theory and measurement over regimes 
3 , 
4 , and 
5 . Never-

theless, a large disparity between theory and measurement is seen in regime 
6 in both value and character of the curve.

This observed effect is due to the disparity in stiffness between the paired springs, and is clearly seen in Fig. 7 d. 

It is also of note that the theoretical predictions for all configurations cross the zero stiffness line and become negative,

which implies that this particular disk spring should snap through in a buckling action. Almen and Laszlo [6] have shown

that the disk spring in question should have a negative spring rate when the inequality h > τ
√ 

2 is satisfied, as it is indeed

done in this case. However, for configurations ϒ1 , ϒ2 , and ϒ3 , the appearance of a negative stiffness regime does not occur.

This divergence of experimental result from prediction is due to the physical constraint of the platen not allowing the disk

spring to pass though the flat to the inverted displacement regime ( δ > h − τ ) . Conversely, the stiffness of the configuration

ϒ4 does cross zero, albeit to a much lesser extent in measurement than the prediction. The slight buckling action observed

in the experimental configuration ϒ4 is a consequence of the mismatch between disk springs. It can also be asserted that

if the disk springs of configuration ϒ4 were to be perfectly matched (in the sense of their respective load-displacement

characteristics), the effects observed in Figs. 7 d and 11 d would be significantly lessoned. 

8. Conclusion 

The chief contribution of this article is the development of nonlinear load-deflection and nonlinear stiffness formulations

for a single coned disk spring, the primary parallel stack configuration, and two primary series stack configurations. Specific

contributions include the following. First, unlike the prior literature [2, 6, 17–21, 26] , full-range load-deflection characteris-

tics of a disk spring and primary stack configurations have been measured and analyzed to define nine naturally occurring

transition points. A refined load-deflection formulation has been proposed to account for edge friction and interfacial fric-

tion between disk springs in configuration ϒ2 and is compared with prior theory [6, 17–20, 26] . The proposed formula is

then employed to evaluate the values of μe and μφ from experimental results, as well as to assess the amount of hysteretic

force. An updated continuously nonlinear displacement-dependent stiffness expression is then proposed and compared with 

measurements. However, the accuracy of continuous stiffness model is limited to only midrange displacement regimes as
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Fig. 11. Comparison between continuously nonlinear stiffness models with measurements for four configurations of Table 1 and Figs. 1 and 2: (a) ϒ1 , (b) ϒ2 , 

(c) ϒ3 , and (d) ϒ4 . Key: measurement, theoretical prediction using Eq. (14) by assuming continuous nonlinearity over the entire displacement 

range. 

 

 

 

 

 

 

 

 

 

 

large deviations from the measurements at low and high displacements are found. Prior literature [15–26] has mostly ig-

nored stiffness formulations as only one continuous formulation [6] has been discussed. This article enriches the coned disk

literature [1–2, 4, 6, 15–26, 30] , and the characterization methods contained herein should be applicable to diagram springs

and other nonlinear devices over the specified displacement regime [12] . 

Some of the limitations of theory presented here are inherently limited by the assumptions employed by Almen–Laszlo

[6] in the load-deflection relationship. These might be overcome if the disk spring formulation proposed by Hübner et al.

[31–32] could be sufficiently modified to account for the appearance of distinct regimes since it is based on shell theory.

Finally, dynamic experiments on mechanical systems with embedded the coned disks should be conducted to assess effec-

tive elastic and damping properties; such future studies should be valuable from the perspective of constructing quasi zero

stiffness type isolators [7–13] 
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