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active and passive damping treatments. These take the form of piezoelectric patches and a
distributed cardboard liner, since the effects of such combined treatments are yet to be
investigated. Furthermore, prior literature typically considers only the “bimorph” active
patch configuration (with patches on the inner and outer shell surfaces), which is not fea-
sible with an interior passive liner treatment. Therefore, a novel configuration—termed as
“unimorph”—is proposed and included in the model. Experiments are performed on a shell

Keywords:
Shell dynamics
Modal analysis

Piezoelectric patches with active patches (under harmonic excitation from 200 to 2000 Hz) in both the bimorph
Distributed damping liners and unimorph configurations to provide evidence for the analytical model predictions. The
Hybrid damping proposed model is then employed to assess competing control system designs by examin-
Vibro-acoustic control ing local vs. global control schemes as well as considering several alternate active patch

locations, both with and without the passive damping. Non-dimensional performance
metrics are devised to facilitate comparisons of vibration attenuation among different
designs. Finally, insertion loss values are measured under single-frequency excitation to
evaluate several vibration control designs, and to compare the effects of alternate damping
treatments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent article [1], the authors developed a semi-analytical model to predict the vibration of a thin cylindrical shell
subject to a homogenous cardboard damping liner. The motivation for the prior paper was the lack of physics-based analy-
tical studies, despite the common usage of such damping liners for noise reduction in automotive drive shafts [2-5]. Aside
from these empirical or computational studies, few other publications exist for lined shell systems outside of the recent arti-
cle [1] and an experimental study by Koruk et al. [6]. The chief goals of this companion article are to extend the prior article
[1] by proposing a semi-analytical model for a thin cylindrical shell with concurrent active (piezoelectric patches) and pas-
sive (distributed cardboard liner) damping treatments. Given a practical need for exploring lightweight vibro-acoustic treat-
ments for vehicle applications [2-6], this article aims to develop a mathematical framework for the evaluation of vibration
control strategies.

Abbreviations: IL, insertion loss; RMS, root mean square; SPL, sound pressure level.
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Nomenclature
a radius K order of problem (full or reduced)
A surface area (for integration) v Poisson'’s ratio
A system matrix = control transfer function
A accelerance I performance metric
B input matrix P mass density per unit volume
c viscous friction coefficient ¢ Rayleigh-Ritz shape function
C viscous damping matrix ) phase between disturbance and control
di piezoelectric coefficient L shape function vector
d control-to-disturbance vector U2 mean-square value
D control-to-disturbance matrix 10} angular frequency [rad/s]
e exponential constant
E Young’s modulus Subscripts
f frequency [Hz] 0 motion location
F force a acoustic measurement location
h layer thickness c piezoelectric (control) layer or input
I electric current d disturbance input
J imaginary number, v—1 i counting index for layers and modes
K stiffness matrix k counting index for shape functions
! length L cardboard liner
M moment m modal index (in x direction)
M mass matrix n modal index (in 0 direction)
N number (patches, shape functions, etc.) 0 orthogonal shape function set
p sound pressure s shape function
Q generalized force vector - integrated quantity (underbar)
q shape function weighting vector
r rgdlal coordinate Superscripts
t tlme . o arbitrary motion type (transverse, etc.)
T kinetic energy . . u, v, w shape functions for different motions
u, v lateral displacements (in x, 6 direction) ~ complex valued
u input vector (control or disturbance) - normalized or dimensionless (overbar)
U potential (strain) energy N vector (in space)
v voltage , ’ complex conjugate
w transverse dlsplgcement . T standard matrix transpose
w power (meghamcal. elegtrlc. etc.) . H Hermitian transpose
X axial coordinate, endpoint, or location
X axial shape function
o conditioning parameter for performance metric Operators .
\ heren | absolute value or magnitude (for complex num-
Y coherence
A change or shift in value ber)
e normal strain [I-1] surface-averaged RMS value
n loss factor / argument (angle) of complgx number
0 circumferential coordinate, endpoint, or location H Hgavmde (umt' st_ep) function .
® circumferential shape function . Dlrgc d.e Ita (un} t impulse) fungtlon
o derivative of Dirac delta function

Active patches have been used extensively for vibration control of shells, e.g. by Sonti and Jones [7,8] and Chaudhry et al.
[9], who proposed the analytical models to predict shell response due to patch input. These investigators typically assume an
active patch on both the inside and outside shell surface, termed as the “bimorph” configuration. Other experimental work
using active patches or distributed actuators includes publications by Fuller et al. [10], Han and Lee [11], and Bailey and Hub-
bard [12], for instance. There is also a significant body of literature on active vibration control systems, as evident from lit-
erature review by Cabell and Fuller [13] and Kwak et al. [14]. However, relatively fewer publications have addressed
combined active and passive control methods for thin shells [15], though prior methods have considered the active con-
strained layer damping approach in-depth [16-18]. Nevertheless, combined (yet independent) active and passive damping
treatments have attracted only limited attention. For example, studies were published on a beam and a thin plate by Lam
et al. [19] and Plattenburg et al. [20], respectively, but no similar studies seem to exist for cylindrical shells in terms of con-
current active and passive damping. Based on the above mentioned voids in the literature, this article intends to develop a
refined model (as an extension of prior work [1]), for the novel “unimorph” configuration, using a single active patch, that
would modify the existing bimorph theory [7,9]. Experimental evidence of the model refinements will be included, and a few
vibration control strategies will be discussed.
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2. Problem formulation

Consider a thin cylindrical shell of length I, thickness h, and radius a (from the central axis to the mid-plane of the shell) as
depicted in Fig. 1, with the assumed cylindrical coordinate system as shown. The shell is of elastic material with Young’s
modulus E, mass density p, Poisson’s ratio v, and structural loss factor # (see Nomenclature for the identification of symbols).
The system may also have N, piezoelectric active patches as shown in Fig. 1, used to exert control input &. The rth patch is
located at (%, 6.) relative to the coordinate system, and has thickness h; and size L, x [;.. As from [1], the system may also
have an internal cardboard liner of thickness h; with length [; = [ and radius a; = a-h,, (interference fit with “preload”) where
hp = (h + hp)/2. The liner, like the shell material, has properties E;, o, v;, and n; (where E; and #; may be frequency depen-
dent). The shell liner interface also has an associated viscous friction coefficient, c(«), possibly having frequency dependence.
While Plattenburg et al. [1] investigated both viscous and Coulomb interfacial formulations, viscous damping was found to
be the dominant mechanism and thus it will be the only interfacial interaction retained for this study. Finally, a disturbance
force, F; may be applied to the shell (assumed normal to the surface) at (x4, 04) and a measurement of out-of-plane motion, w,
made at location (xq, 0p). Free boundaries (as shown in Fig. 1) are assumed for the scope of this study as they may be accu-
rately replicated experimentally. Material properties and dimensions for this system are given in Table 1.

Prior work for shell resonance control includes many studies on passive constrained layer damping using analytical and
computational methods [21-23], cardboard liners with experimental methods for vehicle applications [2-6], and active
piezoelectric patches with analytical, computational, and experimental methods [7-9,14]. In particular, the piezoelectric
patches are typically used in the “bimorph” configuration [7], with a patch on the inner and outer shell surface where they
can be actuated in-phase (Fig. 2a) or out-of-phase (Fig. 2b). The two phasing configurations can be approximately modeled
by an in-plane traction-like loading or an out-of-plane moment-like loading, respectively [7,9], but some complicating cou-
pling effects (including an effective distributed pressure) may arise due to the shell curvature. If a cardboard liner were to be
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Fig. 1. Example case: active patches and cardboard liner on a thin cylindrical shell with free boundaries (extension of the system studied in [1]); patch size/
location and force/measurement location are labeled; see Nomenclature and text for definition of symbols.

Table 1
Material properties and geometry of shell, liner, and active patches, along with force, motion, and control locations.
Shell Passive liner Active patch
Material Properties Material Aluminum Cardboard Composite
Young’s Modulus, E [GPa] 68 49 31
Density, p [kg m 3] 2606 649 -
Poisson’s Ratio, v [-] 033 0.30 0.35
Material Loss Factor, # [%] 0.10 3.40 -
Geometry Length, [ [mm] 458 458 28.3x14.8
Thickness, h [mm)] 2.10 0.62 0.30
Radius, a [mm] 75.4 74.0 76.6
Locations Force (Excitation) Location, (X4, 64) (0.56, 0.0)
Motion (Response) Location, (Xo, ) (0.98, 0.0)

Active Patch (Control) Locations, (X, 0c) (0.5, 0.0); (0.05, 0)
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Fig. 2. Schematics of shell sector (in the 0-r plane) with three configurations: (a) bimorph with in-phase actuation; (b) bimorph with out-of-phase
actuation; (c) unimorph with cardboard liner.

used for passive damping, the bimorph configuration would not be possible and a “unimorph” configuration would instead
need to be employed for combined active-passive damping (as shown in Fig. 2¢). To the authors’ knowledge, this particular
configuration has never been studied, especially when combined with a liner. A modified theoretical approximation will be
presented for this case based on the work of the prior researchers [7,9].

The objectives of this paper are as follows. First, develop a new semi-analytical model for vibration of shell structures
subject to concurrent active and passive damping treatments, consisting of a distributed damping liner and piezoelectric
active patches (using the unimorph configuration). Such a model would extend the work of prior researchers on the dynamic
analysis of shells and active/passive damping [1,6-9]. Second, conduct experimental studies to validate the predictions of
this model (for both unimorph and bimorph configurations). Third, employ the model to assess competing vibration control
system strategies subject to design constraints, examining local and global control schemes, and exploring several active
patch locations and configurations, both with and without the damping liner. The control measures will be evaluated in
terms of insertion loss at specific shell modes as well as using new performance metrics in the frequency range 200-
2000 Hz, where distinct shell resonances are observed in practical applications [2-6]. Experimental studies of insertion
losses at a specific shell mode (single frequency) will also be provided for selected designs.

Like the prior article, the proposed analytical technique is the Rayleigh-Ritz method for prediction of shell vibration with
free boundaries assumed at x = 0 and x = [ for 0 < 0 < 27. Active patches are macro-fiber composite (MFC) piezoceramic actua-
tors [14,24] and assumed to be bonded perfectly to the shell surface (implying continuity of strain). A thin cardboard liner will
be used with no adhesion, but rather an assumed interference fit such that the liner and shell remain in contact under out-of-
plane motion with w > 0 [1]. Energy methods and Lagrange’s equation are used to derive the governing equations, and analysis
is completed assuming steady state harmonic response in the frequency-domain (at w, [rad/s]). Frequency-dependent proper-
ties such as E; (w) and #; () may be used for the cardboard liner, but their temperature dependence is outside the scope of
this research. Other assumptions include the following. Active patches have negligible bonding layer thickness and do not
appreciably affect the inertial and elastic distribution of the substructure (p (x, 0) and E (x, 0), respectively). A simplified form
of the equivalent patch loading is used which requires the assumption of equality of Poisson’s ratios, vav., which appears rea-
sonable from Table 1. Shear deformations and rotary inertia of structural elements (shell and damping liner) are taken to be
negligible. Finally, the shell-liner system is assumed to be governed by Fliigge’s thin shell theory [25].

3. Development of semi-analytical model

The primary changes from the prior Rayleigh-Ritz model (of [ 1]) are inclusion of forcing from the active patches (detailed
in Section 4.1) and a generalization of circumferential shape functions to allow for arbitrarily located patches. Therefore, two
orthogonal sets of circumferential shape functions [26], namely sin(n6) and cos(n0), are defined as:

OF(x,0) = {¢1(x,0) ¢M(x,0) ... ¥ (x.0}
P (X, 0) = Xm(x) cos(n0)
DY(x,0) = { ¥ (%,0) ¢N(x,0) ... ¢h(x.0)}
P (x,0) = X (x) sin(nd). 1)

Here, ¢ are 2-dimensional shape functions (grouped into vectors ®), X, are axial (beam-like) shape functions (adapted
from [1,27]), superscript w refers to transverse motion, and subscripts s and c refer to sine and cosine circumferential shape
functions, respectively. The N;s shape functions result in an assumed form of the transverse motion, w (see Fig. 1), via a Ritz
linear combination as:

w(x,0) = [qV] @ (x,0) + [q2] @} (x,0), (2)
where temporal dependence (assumed harmonic, with angular frequency  [rad/s]) is dropped for clarity. The formulations

for other motion types (e.g. in-plane, u, ; and liner motions, u; and ;) have analogous definitions. The weighting coefficients
and all the ®* are assembled into vectors of size KNsx1 (where x =5 is the dimension of the system):

(D:{(I)WT (DuT (DvT (I)”LT q)Z/LT}T’ q:{qu quT qz/T quLT qz/LT }T. (3a_b)
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Note that if no liner is used (i.e. the reduced case from [1]) then k = 3. Applying Lagrange’s equation to the energies and
non-conservative work with respect to the unknown weighting factors, q, results in the following system of equations:

M{+Cq+Kq=0, (4)

Here K (e C*Nsx*Ns) € and M (e R*M**Ns) are equivalent stiffness, damping, and mass matrices given by Plattenburg et al.
[1]. Because sine and cosine integrate to the same value over full periods, only one of the two orthogonal sets need be

retained in Eq. (3a) and in the integrals generating M, C, and K; however these will play a more important role in Section
4 and beyond with external forcing considered.

The complex eigenvalue problem associated with Eq. (4) can be solved by standard methods [1], and the natural frequen-
cies and modal loss factors of a sample system (having dimensions and material properties given in Table 1 and damping coef-
ficient c, = 1x10° kg m~2 s~ 1) are denoted for selected modes in Table 2. Note that the presence of the liner typically results in
a decrease in natural frequency (f;) as well as an increase in modal loss factor (#;) and peak attenuation (insertion loss).

4. Forced harmonic responses from active patches and disturbance
4.1. Effective loading from active patches

In order to account for the inputs to the shell system from the active patches, the Rayleigh-Ritz method requires a gen-
eralized forcing term [28] to be added to the right-hand side of Eq. (4) as:

v=a [ - / " F(x,0,0)0%(x, 0)d0 d, (5)

where « refers to one of the « sets of shape functions and F* refers to a distributed force component corresponding to one of
those motions (i.e. a force normal to the surface corresponds to w, traction in the axial direction corresponds to u, etc.). Fol-
lowing Sonti and Jones [7] and Chaudhry et al. [9] for bimorph active patch configurations, the out-of-phase case is repre-
sented by line moments along the patch boundaries and the in-phase case by line forces at the patch boundaries plus a
distributed pressure over the patch area. These equivalent loading vectors can be written for the rth active patch (assuming
harmonic excitation at frequency w) for the out-of-phase case as:

F eout(®,0,6) = {ML[/(x — X0y) — ' (x — X0,)|[H(0 — 0Fy) — H(0 — 00,)] + ...
Mi[H(X — X0,) — H(X — X,)][5'(0 — 0L,) — 8(60 — 6[,)] }e, ek, (6)

and for the in-phase case as:

F ein(x,0,6) = (FL(x, 008y + Fr(x, 0)8, + F7(x, 0),)el@t+0D),

FL(x,0) = F{[o(x — X3) — 0(x — x¢)][H(0 — 1) — H(0 — 0,)],
Fj(x,0) = F[6(0 — 0cy) — 6(0 = 0ct)][H(X — X;) — H(x — x35)],
Fi(x,0) = P{[H(x — x{;) — H(x = X{,)I[H(0 — 0¢1) — H(0 — 0F5)]- (7a—d)

Here, Fis a 3-dimensional force vector with components in the x, 0, and r directions; &, &,, and é, are unit vectors spanning
R in cylindrical coordinates; §(-) is the Dirac delta function; H(-) is the Heaviside function; ¢ is the control input phase rela-
tive to a reference; X.q, X, 6¢1, and 6, are patch boundaries (i.e. x.+0.5Ly. and 0.+0.5Ly/a); My and M, are equivalent
moment strengths from the active patches; F, and F, are equivalent traction line forces; and P, is the equivalent distributed
pressure. This pressure is given as P, = —F,/a, obtained from static force balance on the shell sector beneath the active patch.
This equivalent pressure (illustrated in Fig. 3) is given in the literature [7,9] in order to avoid a rigid body loading resulting
from the equivalent traction forces with a nonzero resultant.

Note that the approximate moment induced by an active patch pair in the out-of-phase case is transformed to an equiva-
lent force-couple in Eq. (7) as from [29] (via the derivative of the Dirac delta function, §(-)). Schematics of the equivalent
loadings from Eq. (6) and (7) are shown in Fig. 4a and b. Next, it is proposed that the net loading of the unimorph active patch
configuration could be approximated as a combination of the in-phase and out-of-phase bimorph configurations. The single

Table 2
Predicted natural frequencies, modal loss factors, and insertion losses of unlined and lined shell structures for selected modes.
Mode # Modal index (m, n) Natural frequency [Hz] Modal loss factor [%] Peak insertion loss [dB] (Lined)
Unlined Lined Unlined Lined
3 (0, 3) 698 675 0.1 1.1 22
4 (1,3) 712 690 0.1 1.1 18
5 (2,3) 1013 984 0.1 0.7 20
6 (0, 4) 1338 1294 0.1 0.9 21
9 (2,4) 1469 1422 0.1 0.9 21
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(a) (b)

Fig. 3. Effective distributed pressure loading: (a) in-phase actuation;
balanced by an effective pressure (---)).

Fig. 4. Equivalent loading from alternate active patch configurations on a shell section: (a) in-phase bimorph with F,, Fy, and P, (—) and patch endpoints
labeled; (b) out-of-phase bimorph with M, and M, (—); (c) proposed combined loading representation of unimorph.

patch induces in-plane traction and pressure on the surface, and since it is offset from the mid-plane of the shell there is also
a net effective moment at the patch boundaries. This can be seen intuitively from Fig. 1, where the equivalent loading in (c) is
equal to the resultant of half the sum of (a) and (b).

Here a simplified piezoelectric model [7,9] is used with an assumed relation between piezoelectric strain and voltage of
the form &, = d3,V,, where ds; is a generic (potentially non-constant) piezoelectric strain-voltage coefficient. For example,
Crawley and Anderson [30] detail some of the nonlinearities that may exist with these coefficients. Under these assumptions,
F, and F, are given as:

T o Eh ZEChC fad T Eh ZEchc 17 _
Fu= (1 - v) ' (ZEChC n Eh) Veldsi —ved), - Fo= (1 - v) ' (ZEchc n Eh) Veldsz = vedsn), (8a—D)
each having units of [N/m]. Moment loading magnitudes, M, and M, are written as:
- Eh* Echch(h+h ~
MX = . 3 S 2( a C) ) . VC(d3l - de32)7
1-v Eh® + Ech.(6h” + 12h:h + 8h;)

(9a—b)

i, — (£ Echch(h+ h) i
M, = . Ve(dsy — vedsr),
0 <1 B v) <Eh3 + Eche(6h* + 12hch + 8h?) (d3 31)

and the distributed pressure, P,, is obtained from F, as above. Here, V. is the complex-valued control voltage, d3; and ds»
piezoelectric coefficients aligned in the x and 0 directions, respectively, and the negative Poisson term (v) is due to the effec-
tive compression induced by the Poisson effect. Typically, MFC patches actuate uni-axially, so ds; will be assumed to be zero.
A schematic of the resulting configuration and equivalent loading is shown in Fig. 5c.

Thus all the loading coefficients are obtained in terms of the excitation and material properties, and substituting Eqs. (8)
and (9) for unimorph loading into Eq. (6) and (7) and the result into Eq. (5) gives the following expression for Q.:

Q={Q" Q" Q" 0 0,
Q= {aIVI}[x,;(xl) —x;n(xz)][ (:z @,,(e)de} .

%1\79 { / Xm(x)dx} 6,(0,) — ©.(0)) + ab, { / Xm(x)dx] [ 0102 @n(e)de} }ewc,
0ty = aF Xnlx) - Xt 0,(0)do] e

0

QU =F { /X b Xm(X)dX} [On(02) — On(61)]€7. (10a—d)
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Fig. 5. Effect of control input from an active patch on predicted vibratory response spectra of a thin shell (i.e. A.(w)), unlined (—), and lined (- - +), with
modal values denoted by large dots (e).

Here, X;,(x) and ®,(0) are the mth and nth axial and circumferential shape functions in the notation of [ 1] (of a total of N
and N, shape functions, with Ny x N, = N;) and k refers to the kth element of the Q vector, with mapping k = (m — 1)N, + n.
This may be readily extended to the case of N, active patches, each with different relative phasing, ¢’ and voltage input, V7.
in which case each of the Q component vectors are summed over r =1, ..., N.. This can be conveniently written in the form
Q. =B i, where i, = { \73 . Vch }Tis a vector of complex-valued control inputs and B, is an input matrix mapping con-
taining information about each individual patch’s geometry, location, and material properties (without the magnitude and
phase dependence associated with the input voltage). The matrix B.(e R*N-*N¢) is defined as follows:

A w,r A w.r O ur O v.r
Br/,r — Q—c _ Q—C BuJ’ _ C BV.T _ C . (113—8)

T
B.= (B B! B 0 0] B/={B' ... B} vty B

=, c =
T r
VC VC

Such a representation will be useful for control scheme derivations in Section 5. It should also be noted that because the

harmonic inputs (disturbance or control) are typically localized, the limits on the 6 integral in Eq. (5) effectively become dif-
ferent than 0 and 27, integrals of ®(0) are no longer over full periods of sine and cosine, and thus Eq. (5) assumes a different

value depending on whether ®4(x, 0) or ®(x, 0) is used. Ultimately, two forcing vectors, Q. and Q., (subscript o indicating
orthogonal) must be generated (corresponding to substitution of @; and @, of Eq. (1) into Eq. (5), respectively), and there-
fore, two input matrices, B. and B.,, are also generated.

4.2. Effective loading from disturbance force and forced harmonic response
Like the work in [1], the disturbance forcing is assumed as a point load normal to the surface (i.e. aligned with é,) as this

loading is representative of typical experimental input, such as from a shaker or impulse hammer. Thus the disturbance force
per unit area, assuming steady-state harmonic time dependence, can be written as Fd(x, 0,t) = Fq 6(X — x4)0(0 — 04)é,e/(@+0a),
where F; is the force amplitude. Applying this to Eq. (5) results in the following for Qd:

Q={QY" 0 0 0 0} ,Qf =F,®(x4,0q)e7. (12a—b)

As from Section 4.1, this could be extended to Ny disturbance inputs with Q4 € C***N¢, though the scope of this paper is
limited to N; = 1. Also, a similar scaled disturbance input matrix is defined as:

AW, AW,
_ rpwT T pw _ (pwl w,N wr _ g N4 _
B,=[B;” 0 0 0 0] .B;=[B}" ... B "], B, _Fgei“’é_ﬁz’ (13a—c)
with Qd =Byugand u,; = {f}l - l?g’d }T. Again, Qd and Qd,o are generated, as well as B; and By, via substitution of @, and
@, in Eq. (5), respectively.
With the external loadings, Eq. (4) is augmented as
Mg+ Cq + Kq = Byt + B = Q4 + Qo (14)

and assuming excitation and steady-state harmonic response (at ), the weighting vector q is:

() = [K +joC - ™M) {Qq+Qc} = A®)] {Qq+ Q). (15)
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where K(u)) is a reduced version (dimension xKN;xxN; rather than 2xNx2kN;) of the IN\(w) matrix from the state space
representation of [1]. Response vectors q, and q. are obtained using Eq. (15) with Q and Q,, in Eq. (15), and forced response
spectrum in terms of out of plane motion w (x, 0) can be determined at a given frequency by Eq. (2). This result (with V, = 0)
for an undamped shell (with dimensions from Table 1) at the response location (Xo,6y) = (0.98,0) given force excitation at
(X4,04) = (0.5,0) was given in the recent work by Plattenburg et al. [1] for both unlined and lined shell cases. Here, overbars

on locations x and ¢ indicate normalization by [ and 2, respectively, and accelerance is defined as Ay(w) = \'71/((1)) /

Fd(w) = —*w(w) /Fd(w). The forced response due to active patches can also be computed by setting F; =0 in Eq. (12). This
result is given (both unlined and lined) in Fig. 5 for a patch located at (x.,0.) = (0.05,0) and response location again at
(X0, 00) = (0.98,0). Patch properties and size are listed in Table 1. The response here is normalized in terms of acceleration

per input strain from the active patch, ﬁlc(a}) = ;V(w)/Ec(w). where 2, = V.ds;.
4.3. Effect of patch configurations

Next, the shell response due to the unimorph active patch configuration (based on the simple model proposed in Section
4.1) is compared with the responses due to the in-phase (Fig. 4a, My = My =0 in Eq. (10)) and out-of-phase (Fig. 4b, P, =
F.=F.=0in Eq. (10)) bimorph configurations. The vibratory response transfer functions, A.(w), for each of the three patch
configurations is plotted in Fig. 6a, given patch input at (X, 6.) = (0.05,0). Here is it seen that the response due to the unim-
orph configuration is dominated by the extensional input (i.e. the in-phase component) rather than the moment loading
(out-of-phase component). The difference is at least an order of magnitude (20 dB) over the frequency range of interest; this
is in agreement with Sonti and Jones [7] who showed that the in-phase bimorph configuration couple better into the lower
modes than the out-of-phase configuration.

5. Experimental validation of model

An experiment is designed (as shown in Fig. 7) to provide evidence for the simplified formulation of the unimorph active
patch configuration from Section 4. This consists of a thin shell supported by bungee cords (to simulate free boundaries)
enclosed in an anechoic chamber. Since the rigid body modes associated with the shell and bungee cord system are found
to be less than 10 Hz and sufficiently removed from the shell modes of interest, the influence of the bungee cords can be

assumed negligible. Excitation is induced by an impulse hammer as well as a voltage input (V;(w)) to the rth active patch
(in the unimorph, as well as in- and out-of-phase bimorph configurations), and acceleration and sound pressure are mea-
sured at locations (xo, 6p) and (X, 04, 14), respectively. Measurements with unimorph patch input are made with and without
the presence of a passive liner of thickness h; = 0.62 mm. A strain gage is also placed on the active patch (to quantify the
nature of the generic & = ds3;V, relationship).

First, the active patch strain is measured as a function of input voltage frequency (sinusoidal voltage input at constant
unity gain) and the results are displayed in Fig. 8. Observe here a nearly linear relationship between patch strain magnitude
and excitation frequency, with approximately uniform phase. Very high coherence values above 200 Hz (close to y = 1) indi-
cate good measurements and lend credibility to this experiment. This nearly linear relationship indicates that ds; is of the

following empirical form: 331((1)) ~ m|ds; |el*c. Alternately, this could be interpreted as the output strain of the active patch
being proportional to the current through the patch. Indeed, if the active patch is assumed to be a purely capacitive element,
the AC current-voltage relationship is of the form:

V(w) = jwicf(w). (16)

Thus, with uniform voltage, the corresponding current would be linear with frequency and have a constant phase angle
of +90°, nearly identical to the strain plots from Fig. 8. Based on a linear regression of measured data, the observed propor-
tionality constant between frequency and control strain is approximately 5.4 x 10~* pe V=' Hz™' in the principal patch direc-
tion and 3.4 x 10~* ue V-1 Hz! for the orthogonal direction. These experimental measurements, having high coherence,
indicate validity of this linear relationship for this particular configuration. Therefore the observed empirical transfer func-

tion (% () = ds; (w)) will be used to map a measured w (w) transfer function to the desired A.(w) = i (w) (for the sake of
c ( &c

comparison with the model).

Next, acceleration and sound pressure measurements are made subject to active patch input. The acceleration magnitude
results (normalized by input strain) are shown in in Fig. 6 for all three active patch configurations. There is reasonable agree-
ment between the experiment (Fig. 6b) and the model (Fig. 6a), especially in terms of the qualitative shape of the magnitude
spectra (i.e. relative magnitudes among three configurations, and relative locations of peaks and valleys). The absolute mag-
nitudes of the measured A.(w) spectra deviate from the analytical results by a substantial amount (approximately 30 dB),
primarily due to the unmodeled dynamics of the piezoelectric patch, and the simplified piezoelectric relationships assumed
[7,9]. While a more comprehensive model relaxing some of these simplifying assumptions could certainly be developed in
the future, as a first approximation the proposed analytical formulation is deemed sufficient for comparative studies among
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Fig. 6. Comparison of unimorph and bimorph responses, in terms of A.(w) magnitude spectra of a thin shell, unimorph (—), in-phase bimorph (- - -), out-of-
phase bimorph (- - -): (a) analytical predictions; (b) results from the experiment of Section 5.

different configurations and evaluating relative vibratory attenuation effects. Next, the approximate model developed in Sec-
tion 4 will be used to design a vibration control system.

6. Design of alternate control schemes for steady-state harmonic response
6.1. Design for local or global control

If there are critical components at certain isolated locations (e.g. at (Xq, 0p)), it may be desired to force the transverse
motion wg = W(Xq, 0p) to vanish. Assuming harmonic excitation and steady state response, Eq. (15) is used to compute q.

Then, setting Eq. (2) equal to zero, w(x, 0) = [q‘;’]TCI)ZV(& 0) + [qzV]T(D‘C’"(x, 0) = 0, and substituting the result from Eq. (15) for
q, the complex-valued control effort V. required to achieve this condition (with N, = 1) is given by:

(BJA@)] ) (0, 00) + (BaolA()] '} (0, 00) -

V(o) = ——— ——— Fg. (17)
{B[A(w)] } ®F(X0,00) + {Bco[A(®)] } D (X0, 00)

S T - q T
Note here (and throughout Section 6) that only the first N; element of the vectors {B4[A(w)] 1} and {B.[A(w)] ]} are
retained so the multiplication with ®" is well-defined. If multiple response locations are desired to be controlled (i.e.

(xb, 6%) for i=1, ..., No) a system of Ny such equations must be defined. Given N, control inputs, a matrix equation is
defined as:

D(w)u, = d,

- ~ 1~ T . ~ 1~ T o

Dy = {[A(w)] B} @ (x5, 0) + {[A(w)] Blo} ®F(xp,0p), (18a—c)

di = [{A()] "B} 0700,0)) + [A)] By} ®F (. 00)]Fs,
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Fig. 7. Schematic of the validation experiment for a shell with active patches and a cardboard liner, with measurement of acceleration and sound pressure
responses given input from impulse hammer/shaker and/or active patches; refer to Nomenclature for symbols.
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Fig. 8. Measured transfer functions of a piezoelectric patch, indicating output strain per input voltage in both principal (---) and orthogonal (—) directions:
(a) magnitude; (b) phase; (c) coherence.

where B/ is the jth column of matrix B,. This system can be solved for the vector of complex control efforts, 1, as a function

of frequency if D is invertible, which from control theory requires that the No-dimensional observable subspace and the
N~dimensional controllable subspace have equivalent span [31].
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Alternately, some applications or design constraints require a minimization of global vibration or acoustic radiated sound
pressure, since the sound power of the radiating source, W), is proportional to its mean-square transverse surface velocity,

[W(x,y; w)||* [32]. Here ||-|| indicates the surface averaged root mean-square (RMS) value. Based on the derivation of the
equations of motion from [1] and Sections 3-4, the global vibration is expressed in terms of the surface-averaged mean-
square value of shell displacement as a quadratic function of q:

W) = [f @y er + @y eray oy + azy'oyan (19)

where superscript H indicates the Hermitian transpose. The displacement |[w|*(®) = ¥ (w) can then be related to the

mean-square velocity, 2, by a factor of w?. A sound pressure reduction is then equivalent to a reduction in sound power
or surface velocity (at w) in terms of the insertion loss (IL, e.g. IL,, for vibratory, IL, for acoustic, etc.), defined as:

IL = 10log,, (P2, /¥?) [dB]. Here W? is the mean-square value of some response (i.e. sound pressure, surface velocity, etc.)
and subscripts t. and unt. refer to treated and untreated, respectively.

To minimize the global vibration ¥2, Eq. (19) is differentiated with respect to the complex-valued control effort V.. Again,

if multiple control efforts Vi are used (with i=1, ..., N), this generalizes readily by using partial derivatives of ¥2 with
respect to the N, control efforts. This results in N. decoupled equations for the ith control effort as:

o {A@) 'Ba} SUA@)] B} + {[A@)] Bao) S{A®) B}
Vi(o) = - L2282 SURON 2o 7 UROY Daof SURON "ol
{A@) "B} S{A()] "B} + {A()] 'BL,} S{AW@)] B} (20a-b)

S—a /0 ” /0 (0% (x,0)) {0 (x,0)) Tdxd0 — @ /0 8 /O (0 (x,0)) {0 (x,0)) Tdxd0

where S is a constant matrix of the integral of the shape functions. The cross terms associated with @ ®. fortuitously drop
out due to their orthogonality, greatly simplifying the expression in Eq. (20b). Again, only the first N elements of the vectors

- 1 T
{B[A(w)] 1} are retained here. Note that for uniform thickness and density shells, phS = My; (in the notation of [1]), and S is
a constant diagonal matrix if the shape functions are mutually orthogonal (which is approximately satisfied for free bound-

. . . . ~ -1.T i
aries). In this case, the numerator and denominator become inner products between vectors {B[A(w)] } and then V% in Eq.
(20a) can be interpreted as the projection of the disturbance vector onto the ith control input vector (with negative direction)
in the Ns-dimensional shape function space.

6.2. Effect of control scheme design

In order to verify the derivations of Section 6.1, a brief study is given here. First, the value of local response, wy = W(Xo, 0),
is checked under local control scheme of Eq. (17) and (18). The resulting operating displacement shape of the shell is com-
puted with and without control for an active patch at location 1 (i.e. from Table 1), measurement location at (Xo, 0p) = (0.98,
0.0), and excitation at the 5th natural frequency, corresponding to the (2, 3) mode. The result is plotted in Fig. 9, where ||
denotes absolute value and normalization by the maximum value of the uncontrolled response (thus Fig. 9a has range
0 < |[w| < 1). Observe that |w| is indeed forced to 0 at the measurement location under the local control scheme, and further-
more, the overall response is reduced by approximately 95%. The control effort effectively rotates the mode shape in the 6
direction, forcing |w| at the response location (Xq, 0p) from nearly a maximum to zero.
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Fig. 9. Effect of local control on the predicted transverse shell response under excitation of the (2, 3) mode: (a) uncontrolled; (b) controlled.



J. Plattenburg et al./Mechanical Systems and Signal Processing 91 (2017) 422-437 433

Next, the global control scheme of Eq. (20) is verified, keeping most parameters the same as in the local control study of Fig.
9 (disturbance/patch location and excitation frequency). The shell response due to the optimal value of V. is compared in Fig.
10a and b with other values of the control effort—ranging in magnitude from 0.1 |Vc| to 10\\7¢| and in phase from £V, + 7,
respectively. Here the global response is computed for each value of V., and normalized such that ‘I’fv(Vc,opt) =0 dB. The dis-
placement profile for the optimal value of V. is also given in Fig. 10c. Note from Fig. 10a and b that the minimum value of P2 in
both cases is coincident with the optimal value of V. as computed from Eq. (20). It can be further observed from Fig. 10c that
the displacement profile is rather similar to that under local control in Fig. 10b; indeed in all cases the (2, 3) mode is still the
dominant participant. However, under global control ¥Z is reduced by a finite, albeit marginal, value of 0.2 dB relative to local
control, consistent with the hypothesis that global control should give the smallest value of ‘I’ﬁv for any control scheme.

Finally, the control transfer functions = () = V.(®)/Fq(w) are compared in Fig. 11 for both the local and global control
schemes (with measurement location (Xo,0o) = (0.98, 0.0), disturbance location (%4, 0,) = (0.56, 0.0)), and two active patch
locations (from Table 1). The required control effort is a function of frequency, active patch location, and control scheme.
The value of = tends to take on a higher value at resonant modes, which intuitively suggests that more energy is needed
to control the modal response. It is also seen that patch location 1 typically results in a somewhat smaller value of = inde-
pendent of the control scheme, meaning that it would be a “cheaper” location, to say nothing of the resulting value of ||w]|?
or wy. Since the global control scheme is most applicable for acoustic radiation problems, this scheme will be used for the
remainder of the paper.

7. Vibration control performance metrics

In order to evaluate the broadband shell response, first, consider the total kinetic energy associated with transverse
motion of a uniform shell, T(w) =1phA¥; (w), where A is the surface area of the shell. Then, define a “pseudo-
mechanical power” to be the temporal derivative of T, namely W, () = oT for harmonic motion, having units of Watts. This
power value captures the time-averaged vibratory energy of the structure. Next define the broadband attenuation of the
mechanical power, W, to be:

unc. C. 1 QZ unc. l QZ C.
AW =W - W1 0, -0 /Q] Wi (w)da)—m o, Wi (w)do. (21)
Here, underbars denote integrated quantities, superscripts c. and unc. refer to controlled and uncontrolled, respectively,
and Q and Q, are the lower and upper frequency limits. Thus, a large value of AW, corresponds to an effective vibration
control system. This representation may provide an alternate means of quantifying attenuation, as opposed to insertion loss
at a single frequency, because the presence of the cardboard liner may result in shifting of natural frequencies (as discussed
in [1]). Next, consider the input electrical power (units of [W]) to the active patches, defined as:

15~ 1 ~ 2 1 &
w ==V.I =zwCV We=——+ w 22a—
c(w) 7 Vele 2(1)C| ()], Ye=0,"0, o c(w)dw (22a-b)
a
9 80
m 0.04
= 60
o3
S 40 0.035
g
£ 2 0.03
o
e 07 ; ] 0.025
10 10 10 o

(b) Control Magnitude 0.02 |W‘
— 80 -
g 0.015

]
S 0.01

g ? 0.005

= ;

8- 20
2 g

2200 -100 0 100 200 0 0.1 0.2 0.3 0.4

Control Phase [deg] x [m]

Fig. 10. Effect of global control on the predicted shell response under excitation of the (2, 3) mode: (a) varying magnitude from 0.1 |Vc| to IO\VE\ with |\7E|
denoted by @; (b) varying phase from —180 to 180° with £V . denoted by @; (c) controlled displacement profile.
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Fig. 11. Comparison of control transfer functions Z(w) for a shell with patch at location 1 (=) and 2 (-..): (a) global control scheme; (b) local control
scheme.

where I is the input current in the frequency domain and C is the capacitance of the active patch (nominally 1nF for the MFC
patches of this research [21]). Ideally, this input electrical power would be small for an efficient control system design.
Finally, two normalized performance metrics (both dimensionless) are defined as follows:
AW, W W I, — AW,

Wi W T AWy oW

Here, IT; quantifies strictly performance in terms of reduction of vibratory energy, and ranges from 0% (no reduction) to
100% (full vibration attenuation). The metric IT,, on the other hand represents “efficiency” of the control system; it ranges
from O to 1, and has a value close to 1 when attenuation is high while input power is not too large. Because the extreme value
of 1 will never truly be reached with finite input, the absolute value of II, is less important than relative values in a com-
parative study. Thus, the empirical factor o is simply a conditioning parameter to keep I, from becoming very close to 0 or 1
and to facilitate comparisons if the relative values of AW;, and W, become very disparate.

1, (23a—b)

8. Illustrative vibration control design studies
8.1. Selection of active patch candidate locations

Several active patch locations are considered, with either one or two patches, to determine the resulting shell response
and control input for the global control scheme. This study is limited to the locations (xo, 6o) and (x4, 64) given previously
(from Table 1), and the shell modes in the range 200-2000 Hz. Three patch locations— (X, 0.)—are considered here as follows
(also shown in Fig. 12): (1) a single patch at (0.05, 0.0); (2) a single patch at (0.5, 0.0); and (3) two patches at (0.05, 0.0) and
(0.5, 0.0). These locations are chosen to attack 0-type modes (1) and m = even x-type modes (2), or both (3).

To compare the three locations, the broadband global mean-square velocity (¥ () = w? |lw|*) is computed for each case
under the global control scheme, and the results are plotted in Fig. 13. It is seen here that location 2 seems to provide better
control in the broadband sense than location 1. However, at several of the modes, in particular those with odd m, location 2 is
less suited for control. Location 3 appears to provide the best performance in all cases (as might be expected, since more
energy is consumed from using two patches).

8.2. Simulation of comparative designs

Next, the following vibration control designs are numerically evaluated (as illustrated in Fig. 14): (I) a passive liner (i.e.
the case of [1]); (II) one active patch at location 2; (III) one active patch at location 2 along with a passive liner. A single liner
thickness of h; = 0.62 mm is used; interfacial damping is assumed to be ¢, = 1x10° (a typical value from [1]); 200—2000 Hz is
taken for typical acoustic applications; and patch location 2 is selected based on the insights gained from Section 8.1. While
two active patches may provide superior attenuation, the relative effects of active patch vs. passive liner are of more interest
here. For each case, the global responses are computed along with metrics I, (performance) and II, (efficiency, with
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Fig. 12. Schematics illustrating three patch locations and orientations, unrolled (top), and on a closed shell (bottom): (a) location 1; (b) location 2; (c)
location 3.

o =100), given in Table 3a. The IL values (of global velocity) for each case relative to the unlined shell are also listed for
selected modes in Table 3b, representing single frequency attenuation. From Table 3 it is seen that theoretically, while an
active patch can provide large attenuation for some modes, the location of a particular patch may limit the IL at other modes
(e.g. mode 4). The addition of the passive damping liner should improve vibratory reduction in terms of both IT; and II,
values, indicating improvement in both performance and efficiency. Furthermore, the concurrent damping should enhance
the modal IL value of the active-only case (design II) and improve the attenuation in the broadband sense. This suggests that
the concurrent active/passive approach could be beneficial for many applications.

8.3. Experimental study for a single mode

Finally, as an illustrative case study, the effects of alternate treatments—designs I, I, and III of Section 8.2—are experimen-
tally studied at the (2, 3) mode. An electrodynamic shaker is attached to the freely suspended shell at (%o, 0) = (0.55, 0.6) via
a compliant stinger (see Fig. 7) and used to excite the shell at a single frequency close to the (2, 3) mode. The input force is
also measured via an interfacial load cell. Note that the voltage input to the shaker (disturbance) is selected in each case to
ensure equal force input (F; = 0.016 Ngys). The active patch is then used to attenuate both local acceleration at (Xo, 6) = (0.0,
0.98) as well as sound pressure at (X4, 04, 74) = (0.5, 0.1, 0.5). This is achieved by selecting the voltage magnitude and phase
input to the active patch such that the response is equal to (and out of phase from) that of the disturbance, termed as “user-
in-the-loop” control. A summary of the experiments, including the excitation frequency for unlined and lined cases (993 and
968 Hz, respectively), the response magnitudes for both acceleration and sound pressure level (SPL), and the insertion loss on
a dB basis due to the treatments are given in Table 4.

Global Velocity [dB re 1 (m.’s)?:fN]

1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency [Hz]

Fig. 13. Effect of active patch location on the predicted global mean-square velocity of shell, ¥2, as compared to uncontrolled (—), where modal values are
indicated by (e): (a) location 1 (+++); location 2 (- - -); location 3 (*=*=).
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(@) (b)

Fig. 14. Schematics illustrating three vibration control system designs: (a) design I, (b) design I, (c) design III.

Table 3
Summary of comparative vibration control studies from model: (a) in the context of global broadband performance; (b) for modal insertion losses (IL) of global
velocity at selected modes.

(a)
Design Case Active patch location Passive liner Attenuation metric IT; [%] Efficiency metric IT; [-]
(Fig. 1) Relative to Relative to Relative to Relative to
unlined shell lined shell unlined shell lined shell
I NA Yes 89.6 NA NA NA
Il 2 No 97.0 68.7 0.470 0.058
il 2 Yes 98.9 90.2 0.637 0.143
(b)
Mode # Modal Index (m, n) Insertion loss (IL) [dB]
Case | Case II Case III
3 (0, 3) 22 28 45
4 (1,3) 18 1 21
5 (2,3) 20 34 53
6 (0,4) 21 22 34
9 (2,4) 21 27 46
Table 4
Measured responses and insertion losses (IL) for local acceleration and sound pressure level (SPL) at a single mode.
Cases f[Hz]  Voltage input [V (deg)] vip[dB re 1g]  p, [dBre 20 pPa]  Accel. IL [dB]  SPLIL [dB]
Unlined Shell ~ Disturbance (F;=0.016 N) 993 0.18 (0°) 14 70 NA NA
Controlled (for Accel.) 993 4,10 (163°) -37 54 51° 16
Controlled (for SPL) 993 4.00 (170°) -3 28 17 42°
Lined Shell Disturbance (F;=0.016 N) 968 0.22 (0°) 8 62 6 8
Controlled (for Accel.) 968 4.40 (153.5°) -34 52 48> 18
Controlled (for SPL) 968 4.23 (171°) -3 27 17 43P

" passive: design I.
2 active: design II.
b concurrent: design III.

The following observations are made from the measurements (Table 4) which are qualitatively consistent with the pre-
dictions summarized in Table 3. First, the passive liner induces modest IL for both cases, similar to the experiments of [1].
The use of active patches greatly increases this IL value to 40-50 dB. Second, when active patches are used concurrently with
the passive liner, it is seen that the IL values are now similar to that of the active-only case. However, it should be noted that
the “user-in-the-loop” method (in this article) is subject to more variation a feedback control system, and active control may
depend on maintaining very precise control parameters. Third, the inclusion of the passive liner induces additional broad-
band attenuation as a further benefit [1]. As a final observation, note that both the control input magnitude and phase
are different for the lined vs. unlined case, as well as for control of acceleration (analogous to the local control scheme)
and sound pressure (global control scheme). This reflects the differences in the transfer functions of Figs. 5 and 11 between
unlined/lined cases and local/global schemes.

9. Conclusion

This paper extends the recent article by Plattenburg et al. [ 1] by proposing a refined semi-analytical model and presenting
model-based design studies for a thin cylindrical shell with concurrent active piezoelectric patches and a distributed card-
board damping liner. The concurrent active/passive approach is selected due to a lack of prior analytical studies in this area,
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as well as applicability to modern lightweight vehicles with noise sources in the middle and higher frequency ranges [2-6].
The model developed here is an extension of the prior shell formulation [1] and takes into account the effects of active
patches in a novel configuration (unimorph), extending the work of Sonti and Jones [7] and Chaudhry et al. [9]. Experiments
are performed on a shell with active patches (under harmonic excitation from 200 to 2000 Hz) in several patch configura-
tions to provide evidence for the analytical model predictions. Alternate control schemes are derived and given in terms of
transfer functions, and two energy-based performance metrics are suggested which facilitate the design study by allowing
direct comparison of alternate designs. Finally, passive, active, and concurrent approaches are considered in a comparative
study (both analytically and experimentally). The results of this study indicate that additional active patches may provide
significant enhancement of vibratory attenuation but with potentially larger associated cost, whereas inclusion of a distrib-
uted liner should provide broadband benefits for many modes simultaneously.

The proposed model captures the dynamics of shell structures (with specific application to the contemporary automotive
industry, especially its need for lightweight noise and vibration control treatments) and allows for a scientific comparison of
competing vibration control strategies, while providing valuable insight. Also, results illustrate the utility of the proposed
model for design of other practical systems in terms of minimizing vibro-acoustic response of such systems. Further refine-
ments to the research could include improving the active patch model by considering its mass/stiffness distribution or elec-
tromechanical dynamics, and modeling the finite bonding layer thickness. Furthermore, a real-time feedback control system
could be included to improve the fidelity of the experimental results.
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