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Asymptotic trends in time-varying
oscillatory period for a dual-staged
torsional system

Michael D Krak and Rajendra Singh

Abstract

The primary goal of this article is to propose a new analysis tool that estimates the asymptotic trends in the time-varying

oscillatory period of a non-linear mechanical system. The scope is limited to the step-response of a torsional oscillator

containing a dry friction element and dual-staged spring. Prior work on the stochastic linearization techniques is

extended and modified for application in time domain. Subsequently, an instantaneous expected value operator and

the concept of instantaneous effective stiffness are proposed. The non-linear system is approximated at some instant

during the step-response by a linear time-invariant mechanical system that utilizes the instantaneous effective stiffness

concept. The oscillatory period of the non-linear step-response at that instant is then approximated by the natural

period of the corresponding linear system. The proposed method is rigorously illustrated via two computational example

cases (a near backlash and near pre-load non-linearities), and the necessary digital signal processing parameters for time

domain analysis are investigated. Finally, the feasibility and applicability of the proposed method is demonstrated by

estimating the softening and hardening trends in the time-varying oscillatory period of the measured response for two

laboratory experiments that contain clearance elements and multi-staged torsional springs.
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Introduction

Most torque-transmission devices contain discontinu-
ous non-linearities, such as clearances, multi-staged
springs, pre-load elements, and stoppers1–11; prime
examples of this family are vehicle powertrains and
drivelines, which are composed of gears, spline
shafts, synchronizers, and clutch dampers. This inher-
ent set of non-linear features gives rise to undesirable
vibro-impact phenomena, often known in the ground
vehicle industry in terms of gear rattle4,9 and vehicle
driveline clunk5–8 problems. Numerical and experi-
mental studies concerning free vibration or step-
response5–8 clearly show regime-dependent (say
double-sided or single-sided impact9) and time-vary-
ing oscillatory periods, as well as distinct asymptotic
trends (hardening, softening, or linear).4–11 In an
effort to better understand previously observed results
and assess such non-linear phenomena in measured or
numerical motion signatures,4–11 this paper will pro-
pose a new analysis tool. The chief goal is to estimate
the trends in time-varying oscillatory periods of a
non-linear torsional oscillator with a dual-staged

spring and associated dry friction element. The
method will be computationally verified and experi-
mentally validated.

Analytical formulation of the problem

Consider a simple and yet representative time-invariant,
non-linear torsional system described by a single
degree of freedom (SDOF) model shown in Figure
1(a). The corresponding governing equation of
motion is the following

J €� þ h tanh � _�
� �
þ� �ð Þ ¼ T tð Þ ð1Þ
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Here, � is the angular displacement, J is torsional
inertia, h is the Coulomb friction amplitude, � is an
empirical regularizing factor,12 �ð�Þ is the torque trans-
mitted through the stiffness element kð�Þ, and TðtÞ is the
external torque (see Appendix 1 for a full list of sym-
bols). For the sake of simplicity, kð�Þ is a symmetric
dual-staged torsional spring as defined by the following
equation where � is the unit-step function, subscripts I
and II denote stages, kj is the stage-dependent torsional
stiffness value, and �j is an angular stage transition

k �ð Þ ¼ kI þ kII � kIð Þ� �j j ��Ið Þ ð2Þ

Accordingly, �ð�Þ is illustrated in Figure 1(b) and
described by the following piece-wise linear equation
where sgn is the triple-valued sign function

� �ð Þ ¼ kI� þ sgn �ð Þ kII � kIð Þ �j j ��Ið Þ� �j j ��Ið Þ

ð3Þ

The dynamic response within each stage only may
be addressed by a linear sub-system with the corres-
ponding natural periods

�nj ¼ 2� J=kj
� �0:5

, j ¼ I, II ð4Þ

The stiffness of the first stage is scaled such that
kI ¼ �kII where �50. For the case of backlash non-
linearity with � ¼ 0, stage I is a clearance element and
�nI !1. However, when �!1, stage I is a pre-
load feature and �nI ! 0; the limited case is � ¼ 1,
where kð�Þ is simply a linear spring. External torque
TðtÞ is a step applied at t ¼ 0 and is such that the
initial and final operating points (ð�o,ToÞ and
ð�f,Tf Þ, respectively) lie on different stages, as shown
in Figure 1(b). This ensures a comprehensive non-
linear response with three distinct regimes and asymp-
totic trends of the time-varying oscillatory period, as
seen in prior work.4–8

Specific objectives are as follows: (1) propose the
instantaneous effective stiffness concept and utilize it
to estimate the asymptotic trends of the time-varying
oscillatory period; (2) propose the necessary digital
signal processing parameters for related time
domain analyses; and (3) validate the proposed
method by estimating the asymptotic trends in the
time-varying oscillatory period of two recent labora-
tory experiments.8 The scope of this paper is limited
to the time domain analysis of the step-response of
time-invariant torsional systems. Additionally, it is
assumed that damping can be approximated as
Coulomb friction, and therefore, the oscillatory
period may be approximated by the natural period
of the first mode. This article extends the sto-
chastic linearization techniques13,14 proposed by
Wallaschek15 and Rook and Singh.16

Time-varying oscillatory period

The typical step-responses of the example case (Figure 1)
is predicted for two illustrative cases, a near backlash
non-linearity (� ¼ 0:1) and near pre-load non-linear-
ity (� ¼ 10). The values of kII and �I are estimated
from a production vehicle clutch damper.8 Torsional
inertia J is sized so that �nII ¼ 0:1 s, which is within
the range of the first torsional surge mode of a vehicle
driveline.4–9 The amplitudes of h, ð�o,ToÞ, and ð�f,Tf Þ

are judiciously selected for each case so that the
responses have similar durations though each is suffi-
ciently long and exhibits the desired regimes. Angular
motions are predicted through numerical integra-
tion117 of equation (1); several variable-step Runge–
Kutta algorithms intended for low to high mathemat-
ically stiff systems are utilized,17 but negligible differ-
ences between the results are found. Additionally, the
maximum allowable time step for integration and the
time resolution of resulting signals are set equal to
approximately 78.1ms, which corresponds to a sam-
pling frequency of 12.8 kHz. The predicted angular
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Figure 1. Conceptual illustration of the non-linear torsional

system: (a) single degree of freedom model; (b) elastic torque �ð�Þ;
and (c) examples of near backlash (� ¼ 0:1) and pre-load (� ¼ 10)

non-linearities examined in this article. Here, � is the angular dis-

placement, J is the torsional inertia, h is a Coulomb friction element,

kð�Þ is a non-linear torsional stiffness element, and TðtÞ is the

external torque. Refer to the text or Appendix 1 for all symbols.
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motions are shown in Figures 2 and 3; time and angu-
lar displacement are normalized by �nII and �I,
respectively. Responses of Figures 2 and 3 exhibit
three distinct regimes, similar to prior work8: (1) the
double-sided impact regime (di) is characterized by �
crossing both ��I and �I; (2) the single-sided impact
regime (si) occurs when � crosses ��I only; and (3)
the no-impact regime (ni) is defined when � does not
cross any �j.

The responses are further characterized by
oscillatory period �ð j Þ with corresponding time of
occurrence tð j Þ. Values �ð j Þ and tð j Þ are defined as the
elapsed and median times, respectively, between the
jth and (jþ 2)th extrema (peak or valley) of a signal, as
shown in Figures 2 and 3. A continuous time domain
signal �ðtÞ is then calculated from a smoothened spline
fit17 of the discrete points ðtð j Þ, �ð j ÞÞ where
j ¼ 1, 2, . . . ,P and P is the total number of oscillatory
periods; calculated �ðtÞ is shown in Figure 4 for �ðtÞ,
_�ðtÞ, and €�ðtÞ. It is observed that �ðtÞ calculations are
similar across all angular motions and exhibit regi-
me-dependent asymptotic trends, summarized in
Table 1. These trends can be described as hardening
(�ðtÞ ! 0), softening (�ðtÞ ! 1), or linear (�ðtÞ � �nj)
in nature. Next, a concept of instantaneous eff-
ective stiffness is proposed and later utilized to
estimate �ðtÞ.

Concept of instantaneous
effective stiffness

Assume that over a small interval of time, with period
�w centered at time t ¼ t0, the following approxima-
tion14–16 can be made f�ð�Þgjt¼t0 � f�̂ð�Þgjt¼t0 ; here,
�̂ð�Þjt¼t0 is a linear time-invariant approximation of
�ð�Þjt¼t0 . Like prior work,15,16 �̂ð�Þjt¼t0 is defined by
the following where k̂mjt¼t0 and k̂ajt¼t0 are mean and
alternating stiffness components, respectively, and
�, t0h it is the instantaneous expected value (windowed
time average) of �ðtÞ over period �w centered at time
t ¼ t0

�̂ tð Þ
n o���

t¼t0
¼ k̂m �, th itþk̂a � tð Þ � �, th it½ �

n o���
t¼t0

ð5Þ

The proposed instantaneous expected value oper-
ator is defined by the following equation where
wshpðt� t0Þ is a windowing function

�, t0
� �

t
¼

R
t � tð Þwshp t� t0ð ÞdtR

t wshp t� t0ð Þdt
ð6Þ

The windowing function wshpðt� t0Þ has the fol-
lowing general form, chosen such that the instantan-
eous expected value operator can truly be localized

Figure 2. Predicted angular motions (normalized) for a backlash type non-linear system (� ¼ 0:1). Here, �� is the angular dis-

placement,
�_� is the angular velocity,

�€� is the angular acceleration, ��ð j Þ is oscillatory period j, �tdi is the time of transition from the double-

sided to single-sided impact regimes, �tsi is the time of transition from the single-sided to no-impact regimes, and ��I is the angular

transition from stage I to II. Key: ( )—angular motion; (– – –)— ��I ; and (j)—f�tdi, �tsig.
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Figure 3. Predicted angular motions (normalized) for a pre-load type non-linear system (� ¼ 10). Here, �� is the angular displace-

ment,
�_� is the angular velocity,

�€� is the angular acceleration, ��ð j Þ is oscillatory period j, �tdi is the time of transition from the double-sided

to single-sided impact regimes, �tsi is the time of transition from the single-sided to no-impact regimes, and ��I is the angular transition

from stage I to II. Key: ( )—angular motion; (– – –)— ��I; and (j)—f�tdi, �tsig.

Figure 4. Calculated oscillatory period ��ð�tÞ (normalized) for a torsional system with: (a) backlash type non-linearity (� ¼ 0:1) and (b)

pre-load type non-linearity (� ¼ 10). Here, ��nII is the natural period of stage II, �tdi is the time of transition from double-sided

to single-sided impact regime, and �tsi is the time of transition from the single-sided to no-impact regime. Key: ( )—calculated

from ��ð�tÞ; ( )—calculated from
�_�ð�tÞ; ( )—calculated from

�€�ð�tÞ; (– – –)— ��nII; and (j)—f�tdi, �tsig.
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in time

wshp t� t0ð Þ

¼ 0 t5 t0 � 0:5�w
4 0 t0 � 0:5�w4t4t0 þ 0:5�w
¼ 0 t4 t0 þ 0:5�w

8<
: ð7Þ

To estimate k̂mjt¼t0 and k̂ajt¼t0 , the following error is
defined15,16

ejt¼t0 ¼ f� �ð Þ � �̂ �ð Þgjt¼t0 ð8Þ

Next, ðejt¼t0 Þ
2, t0

� �
t
is minimized with respect to

k̂mjt¼t0 and k̂ajt¼t0 as follows

@ ejt¼t0ð Þ
2, t

� �
t

@k̂m

���
t¼t0

¼ 0,
@ ejt¼t0ð Þ

2, t
� �

t

@k̂a

���
t¼t0

¼ 0 ð9Þ

Expanding equation (9), k̂mjt¼t0 and k̂ajt¼t0 are
defined by

k̂m

���
t¼t0
¼

�, t0h it �, t
0h it

�, t0h i2t
ð10Þ

k̂a

���
t¼t0
¼

��, t0h it� �, t0h it �, t
0h it

�2, t0
� �

t
� �, t0h i2t

ð11Þ

Following prior work,15,16 instantaneous effective
stiffness k̂jt¼t0 is assumed to be equivalent to k̂ajt¼t0

k̂
���
t¼t0
¼ k̂a

���
t¼t0

ð12Þ

However, k̂jt¼t0 becomes undefined under static
conditions; therefore, t0 2 ½to þ 0:5�w, tf � 0:5�w�
where to and tf are the initial and final times of the
dynamic response, respectively. Furthermore, t0 and
�w are restricted by sampling parameters and the dur-
ation of the dynamic response. Finally, a continuous
time domain signal k̂ðtÞ is calculated from a smooth-
ened spline fit17 of the discrete signal k̂jt¼t0 .

For the sake of illustration,
�̂
kð�tÞ (normalized,

�kII ¼ 1) is estimated over several wshp and a range

�w for a near backlash type non-linearity (� ¼ 0:1).
The normalized window length ��w is limited to
{0.5, 1, 2}, and windowing function wshp is simply

defined by the following (illustrated in Figure 5): (1)
box-car wbox; (2) triangular wtri; and (3) right-skewed
saw-tooth wsaw. These three window shapes are
chosen so that comparisons can be made between
uniform and non-uniform weighting, and symmetric

and asymmetric windows. The effect of window
length ��w is shown in Figure 6 where wbox is utilized.
It is clear that a smaller value of ��w produces a local

estimation of
�̂
kð�tÞ; likewise, a larger value produces a

global or smoothened estimation. Additionally,

it is observed that the range of
�̂
k is bounded by

physical stiffness elements �kI and �kII. The effect of
window shape is shown in Figure 7 where ��w ¼ 1.

As before,
�̂
kð�tÞ is bounded by �kI and �kII for all

window shapes; however, each produces a unique
result. Windows shapes which have a uniform

weighting (wbox) give a smoothened estimation of
�̂
k

compared to the windows that do not (wtri and wsaw).
It is also observed that estimations from asymmetric
windows (wsaw) exhibit a time-shift effect when com-
pared to the symmetric windows (wbox and wtri).

It is important to note that k̂ðtÞ is a mathematical
concept (and not a physical spring element).

Additionally, k̂jt¼t0 is significantly different from

kð�Þ, t0
� �

t
, which is the instantaneous expected value

of kð�Þ at t ¼ t0 over �w. This is simply illustrated by

the comparison of
�̂
kð�tÞ to �k�ð�tÞ (a continuous time

domain signal of kð�Þ, t0
� �

t
) for ��w ¼ 1 and wbox, as

shown in Figure 8; the greatest absolute difference

of �k�ð�tÞ with respect to
�̂
kð�tÞ roughly 35%.

( )boxw t t′−

( )saww t t′−

t

t

wτ

wτ

t′

t′

( )triw t t′−

t

wτ

t′

(a)

(c)

(b)

Figure 5. Uniform windowing functions wshp used for esti-

mations: (a) box-car, wbox; (b) triangular, wtri; and (c) saw-tooth,

wsaw where t0 is an arbitrary time and �w is the window length.

Table 1. Regime-dependent asymptotic trends of ��ð�tÞ for

� ¼ 0:1 and � ¼ 10.

Regime � ¼ 0:1 � ¼ 10

Double-sided impact (di) Softening Hardening

Single-sided impact (si) Hardening Softening

No-impact (ni) Linear, �� �tð Þ � ��nII Linear, �� �tð Þ � ��nII

Krak and Singh 5
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Figure 6. Instantaneous effective stiffness
�̂
kð�tÞ (normalized) for a backlash type non-linear system (� ¼ 0:1) with windowing function

wbox and uniform window lengths of: (a) ��w ¼ 0:5; (b) ��w ¼ 1; and (c) ��w ¼ 2. Here, �tð1Þ and �tðPÞ are the domain limits of ��ð�tÞ, �tdi and �tsi
are regime transition times, and �kI and �kII are the torsional stiffness values for stages I and II, respectively. Key: ( )—

�̂
kð�tÞ;

(j)—f�tð1Þ, �tðPÞ, �tdi, �tsig; and (– – –)—f�knI , �knIIg.

Figure 7. Instantaneous effective stiffness
�̂
kð�tÞ (normalized) for a backlash type non-linear system (� ¼ 0:1) with uniform window

length ��w ¼ 1 and the following windowing functions: (a) wbox; (b) wtri; and (c) wsaw. Here, �tð1Þ and �tðPÞ are the domain limits of ��ð�tÞ, �tdi

and �tsi are regime transition times, and �kI and �kII are the torsional stiffness values for stages I and II, respectively. Key: ( )—
�̂
kð�tÞ;

(j)—f�tð1Þ, �tðPÞ, �tdi, �tsig; and (– – –)—f�knI , �knIIg.
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Equivalent linear system with
instantaneous stiffness

At time t ¼ t0, the SDOF non-linear system of Figure 1
may be approximated by an undamped time-invariant
linear system (conceptually illustrated in Figure 9) con-
sisting of torsional inertia J and torsional stiffness k̂jt¼t0 .
The corresponding natural period (linear system) is

�̂n
��
t¼t0
¼ 2� J=k̂

���
t¼t0

� �0:5
ð13Þ

A continuous time domain signal �̂nðtÞ is calculated
from a smoothened spline fit17 of �̂njt¼t0 ; it is assumed
that �̂ðtÞ ¼ �̂nðtÞ where �̂ðtÞ is the estimated oscillatory
period of the non-linear system. The normalized signal
�̂�ð �tÞ is estimated for ��w 2 ½0:1, 6� across all wshp; �̂�ð �tÞ for
a near backlash type non-linearity (� ¼ 0:1) and ��w ¼ 2
is shown in Figure 10. For the sake of comparison to
��ð �tÞ (which is calculated from ��ð�tÞ), the domain of �̂�ð�tÞ
is limited to �t 2 ½ �tð1Þ, �tðPÞ�. The quantitative agreements
between calculated ��ð �tÞ and estimated �̂�ð �tÞ in the
double-sided impact regime (di), single-sided impact
regime (si), and the overall response (ov) are defined
by metrics �rr where rr¼ {di, si, ov}

�di ¼ exp �

Z �tdi

�tð1Þ
�� �t
� �
� �̂� �t

� ���� ���d �t

" #
ð14Þ

�si ¼ exp �

Z �tsi

�tdi

�� �t
� �
� �̂� �t

� ���� ���d �t

" #
ð15Þ

�ov ¼ exp �

Z �tðPÞ

�tð1Þ
�� �t
� �
� �̂� �t

� ���� ���d �t

" #
ð16Þ

If �rr ¼ 1, then �̂�ð �tÞ ¼ ��ð �tÞwithin the corresponding
regime (deemed ‘‘best agreement’’); otherwise, as
�rr ! 0, then j ��ð�tÞ � �̂�ð �tÞj ! 1 (possibly the ‘‘worst
agreement’’). Metrics �rr for all wshp and ��w are
shown in Figure 11 (near backlash type non-linear,
� ¼ 0:1) where R½ ��rr� is the range of ��ð�tÞ in the corres-
ponding response regime. It is easily noted that all
window shapes exhibit similar trends; there is increas-
ing accuracy from ��w ¼ 0:1 to 1, followed by a leveling-
off for roughly 14 ��w44, and decreasing accuracy for
��w 4 4. However, the box-car window wi has a slight
loss of accuracy within 14 ��w42. Themaximumvalues
of �rr and corresponding ��w, say �rr best and ��w rr best,
are listed in Tables 2 and 3, respectively. It is obvious
that no single pairing of wshp and ��w (within this limited
set) achieves best accuracy for all response regimes and
given range of � values, and that ��w rr best has a wide
range across response regimes.

Nonetheless, one important observation is made:
Best �rr is achieved when R½ ��rr�4 ��w43R½ ��rr�.
However, a uniform �w might not satisfy this condition
across all response regimes. Therefore, it stands to
reason that awindowing function (wshp adp) that utilizes
an adaptive window length (�wðt

0Þ) could improve the
accuracy. Therefore, the following new adaptive
method is proposed: (1) An initial window length �wo
is judiciously chosen; (2) Estimation of k̂jt¼t0 is first
estimated at time t0 ¼ 0:5�wo using the uniform

Figure 8. Instantaneous effective
�̂
kð�tÞ and mean �k�ð�tÞ stiffness values (normalized) for a backlash type non-linear system (� ¼ 0:1) with

uniform window length ��w ¼ 1, and windowing function wbox. Here, �tð1Þ and �tðPÞ are the domain limits of ��ð�tÞ, �tdi and �tsi are regime

transition times, and �kII is the torsional stiffness of stage II. Key: ( )—
�̂
kð�tÞ; ( )—�k�ð�tÞ; (j)—f�tð1Þ, �tðPÞ, �tdi, �tsig; and (– – –)—�knII.

J

ˆ
t t

k
′=

( )tθ

Figure 9. Effective undamped linear time-invariant system

with instantaneous effective stiffness k̂jt¼t0 at time t ¼ t0 where

� is the angular displacement and J is the torsional inertia.
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Figure 10. Calculated ��ð�tÞ and estimated �̂�ð�tÞ oscillatory periods (normalized) for a backlash type non-linear system (� ¼ 0:1) with

uniform window length ��w ¼ 2 and the following windowing functions: (a) wbox; (b) wtri; and (c) wsaw. Here, �tð1Þ and �tðPÞ are the domain

limits of ��ð�tÞ and �tdi and �tsi are regime transition times. Key: ( )— ��ð�tÞ; ( )— �̂�ð�tÞ; (j)—f�tð1Þ, �tðPÞ, �tdi, �tsig; and (– – –)— ��nII.

Figure 11. Regime-dependent metrics �rr for a backlash type non-linear system (� ¼ 0:1) with uniform window wshp adp. Here, ��w is

the uniform window length (normalized), ‘‘di’’ is the double-sided impact regime, ‘‘si’’ is the single-sided impact regime, ‘‘ov’’ is the entire

response, and R½ ��rr� is the range of ��ð�tÞ (observed) in regime ‘‘rr.’’ Key: ( )—wbox; ( )—wtri; ( )—wsaw; and (j)—R½ ��rr�.
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windowing function defined by equation (7) where
�w ¼ �wo; (3) For t04 0:5�wo, k̂jt¼t0 is estimated using
the following adaptive windowing function where t0�
is the time immediately prior to t0, � is an arbitrary
window length factor (�4 0), and �njt¼t0� is the natural
period of the time-invariant linear system at t ¼ t0�

wshp adp t� t0ð Þ

¼ 0 t5 t0 � 0:5�w t0ð Þ
4 0 t0 � 0:5�w t0ð Þ4t4t0 þ 0:5�w t0ð Þ
¼ 0 t4 t0 þ 0:5�w t0ð Þ

8<
:

ð17Þ

�w t0ð Þ ¼ 2�� J=k̂
���
t¼t0�

� �0:5
¼ ��njt¼t0� ð18Þ

and (4) Estimated oscillatory period �̂jt¼t0 (non-linear
system) is then calculated from k̂jt¼t0 , and the related
continuous time domain signal �̂ðtÞ is calculated.17

For example, �̂�ð�tÞ is estimated using wshp adp over
0:14�46, and the corresponding metrics �rr are
shown in Figure 12 for a near backlash type non-
linearity (� ¼ 0:1); here, �wo ¼ 2tð1Þ. Accuracy
increases from � ¼ 0:1 to 1, then reaches its maximum
within 14�44, and decreases for �4 4. The � values
for �rr best (say �rr best) are given in Table 4. Similar to
�w rr best for the uniform window, �rr best varies greatly
across the response regimes; however, 14�ov best43
(roughly), which is consistent with the prior observa-
tion concerning �w. While �ov best is similar across �
for wbox adp and wtri adp, it has significant vari-
ation for wsaw shp. A comparison of �ov best for the

Figure 12. Regime-dependent metrics �rr for a backlash type non-linear system (� ¼ 0:1) with adaptive window wshp adp. Here, � is

the window length factor, ‘‘di’’ is the double-sided impact regime, ‘‘si’’ is the single-sided impact regime, ‘‘ov’’ is the entire response,

and R½ ��rr� is the range of ��ð�tÞ (observed) in regime ‘‘rr.’’ Key: ( )—wbox adp; ( )—wtri adp; ( )—wsaw adp; and (j)—R½ ��rr�.

Table 2. Maximum values of estimation metrics �rr best using

uniform window wshp.

Window shape (shp) �di best �si best �ov best

(a) � ¼ 0:1
Box-car (box) 0.91 0.86 0.77

Triangular (tri) 0.91 0.89 0.81

Saw-tooth (saw) 0.92 0.82 0.71

(b) � ¼ 10

Box-car (box) 0.84 0.90 0.74

Triangular (tri) 0.83 0.91 0.75

Saw-tooth (saw) 0.83 0.92 0.76

Table 3. Normalized window length ��w rr best necessary for

�rr best using uniform window wshp.

Window shape (shp) ��w di best ��w si best ��w ov best

(a) � ¼ 0:1
Box-car (box) 1.3 2.5 2.5

Triangular (tri) 2.0 4.1 2.2

Saw-tooth (saw) 5.4 1.7 2.9

(b) � ¼ 10

Box-car (box) 1.7 3.1 1.7

Triangular (tri) 2.4 1.9 2.0

Saw-tooth (saw) 6.0 3.5 2.7
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uniform and adaptive windows, (�ov bestðwshpÞ and
�ov bestðwshp adpÞ, respectively) is shown in Table 5;
wshp adp improves overall accuracy for most but not
all cases of � and window shape. Given these limited
observations, it is recommended that wtri adp with
� � 2 be utilized to achieve best possible accuracy in
�̂ðtÞ estimations. Although it is not addressed here,
proper selection of �wo is also significant.
Furthermore, �wðt

0Þ, and thus �, are restricted by a
choice of sampling parameters and the length of the
dynamic response, similar to t0 and �w.

In summary, the following observations are made
regarding the window process: (1) Amplitude of k̂ðtÞ is
bounded by the stiffness values of the corresponding real
spring for all windowing parameters; (2) Smallerwindow
lengths produce a more temporally localized value,
unlike larger lengths which give a more global value; (3)
Uniformly and non-uniformly weighted window shapes
(e.g. box-car wbox and triangular window wtri shapes,
respectively) of the same length can produce significantly
different amplitudes; and (4)Asymmetricwindow shapes
(e.g. saw-tooth wsaw) can produce a leading or lagging
effect with respect to symmetric window shapes (e.g.
box-car and triangular) of similar length.

Validation of estimation method
using measurements from two
laboratory experiments

To validate the proposed method, two laboratory
experiments (X1 and X2), which can be approximated

by the SDOF non-linear model illustrated in Figure 1,
are considered next.8,18 Experiment X1 is a controlled
benchtop setup containing a single torsional clear-
ance,18 and X2 is a large-scale system containing a
production vehicle clutch damper8 (with four
stages). The elastic function �ð�Þ for each experiment
is shown in Figure 13. External torque TðtÞ is applied
in a step-like manner with initial and final operating
points lying on separate stages, as shown in Figure 13.
The primary operating stages of X1 and X2 are
II and III, respectively. Thus, the experiments are
sized such that �nII � 0:1 s in X1 and �nIII � 0:1 s; fur-
thermore, normalized time for each system is scaled
by these values.The time-varying oscillatory period
�ðtÞ is calculated from measurements, as described in
the section ‘‘Time-varying oscillatory period,’’, and
shown in Figures 14 and 15; angular motions8,18 are
omitted for the sake of brevity. For experiment X1,
only the double-sided impact regime (di) with a
softening trend occurs; however, experiment X2 dem-
onstrates all possible regimes and trends (although
regime transition times are not labeled). This differ-
ence can be attributed to the following factors: (a) In
X1, the final operating point ð�f,�f Þ � ð0, 0Þ, whereas
in X2, ð�f,�f Þ � ð�I, 4 0Þ, which increases the likeli-
hood that both double (di) and single-sided (si)
impact regimes occur and (b) Energy dissipation has
a large contribution to the response of X1 due to the

Figure 13. Illustration of multi-staged elastic torque curves

�ð�Þ, and initial ð�o, ToÞ and final ð�f , Tf Þ operating points for

two experiments used to validate estimation methods: (a)

experiment X118 and (b) experiment X2.8 Here, � is the

angular displacement, T is external torque, �j are angular stage

transitions, and subscript {I, II,. . .} denote stages.

Table 4. Window length coefficient �rr best necessary for

�rr best using adaptive window wshp adp.

Window shape (shp) �di best �si best �ov best

(a) � ¼ 0:1
Box-car (box) 1.0 3.3 1.0

Triangular (tri) 1.7 3.7 2.1

Saw-tooth (saw) 4.3 1.4 2.3

(b) � ¼ 10

Box-car (box) 1.1 2.4 1.1

Triangular (tri) 2.8 2.0 2.0

Saw-tooth (saw) 4.6 3.5 3.5

Table 5. Summary of �ov best for uniform and adaptive win-

dows, �ov bestðwshpÞ and �ov bestðwshp adpÞ, respectively.

Window shape (shp) �ov best wshp

� �
�ov best wshp adp

� �
(a) � ¼ 0:1
Box-car (box) 0.778 0.779

Triangular (tri) 0.809 0.810

Saw-tooth (saw) 0.711 0.714

(b) � ¼ 10

Box-car (box) 0.736 0.742

Triangular (tri) 0.750 0.749

Saw-tooth (saw) 0.755 0.747
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presence of a backlash non-linearity (kI ¼ 0), unlike
X2 for which kI is a very soft spring.

Following the suggestions from Section 5, �̂ðtÞ sig-
nals for both X1 and X2 are estimated using wtri adp

with � ¼ 2; an initial guess of ��wo ¼ 1 is selected.
Quantitative comparisons between ��ð �tÞ (observed)
and �̂�ð�tÞ (estimated) are shown in Figures 14 and 15
for experiments X1 and X2, respectively. In particu-
lar, the signal �̂�ð�tÞ correctly exhibits the hardening and
softening nature observed in each experiment though
it lacks complete agreement with ��ð�tÞ. Several factors
could contribute to this difference. First, the suggested
windowing parameters and algorithm (developed
from simplified example cases) may not be optimal
for these real experiments. Furthermore, the corres-
ponding non-linear models of these experiments may
require additional degrees of freedom and the corres-
ponding features would need a higher level of

characterization. Finally, if significant viscous damp-
ing is present with a relatively low stiffness, then the
oscillatory period cannot be accurately estimated by
an effective natural period. Instead, an effective
damped natural period would need to be considered.

Conclusion

The main contribution of the paper is the develop-
ment of a new analysis tool that estimates the trends
in time-varying oscillatory periods in the step-
response of a torsional system containing a multi-
staged spring. Development of the method begins
with the formulation of a new concept of instantan-
eous effective stiffness. Although it is strictly mathem-
atical in nature (and not a physical element), its
amplitude is limited by the stiffness values of the cor-
responding real spring. The related computations

Figure 15. Calculated ��ð�tÞ and estimated �̂�ð�tÞ oscillatory periods (normalized) for experiment X2 using adaptive windowing func-

tionwtri adp with window length factor � ¼ 2 and initial window length ��wo ¼ 1. Here, �tð1Þ and �tðPÞ are the domain limits of ��ð�tÞ. Key:

( )— ��ð�tÞ; ( )— �̂�ð�tÞ; (j)—f�tð1Þ, �tðPÞg; and (– – –)— ��nII.

Figure 14. Calculated ��ð�tÞ and estimated �̂�ð�tÞ oscillatory periods (normalized) for experiment X1 using adaptive windowing func-

tionwtri adp with window length factor � ¼ 2 and initial window length ��wo ¼ 1. Here, �tð1Þ and �tðPÞ are the domain limits of ��ð�tÞ. Key:

( )— ��ð�tÞ; ( )— �̂�ð�tÞ; (j)—f�tð1Þ, �tðPÞg; and (– – –)— ��nIII.
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employ windowing functions, and thus a range of
window shapes and lengths are investigated. Next,
the instantaneous effective stiffness is used to approxi-
mate the real non-linear system (at some instant during
its step-response) as an undamped time-invariant
linear oscillator. Here, it is assumed that the damping
in the real system is relatively low such that its oscil-
latory period at that time can be approximated by the
natural period of the linear oscillator. The method is
then applied to numerical example cases and a set of
windowing parameters, which include window shape
and an adaptive length algorithm, are suggested from
the results. Finally, the proposed method is validated
by correctly estimating the asymptotic trends (such as
hardening or softening) observed in the time-varying
oscillatory periods of two recently proposed experi-
ments by the authors.8,17 Although measured (or
numerically simulated) responses must be known to
calculate the instantaneous effective stiffness, the util-
ity of this concept demonstrates its relationship to the
non-linear response. Specifically, this time domain
concept correctly identifies hardening and softening
trends, which have been historically discussed in the
context of harmonic excitation.9,11,16 The method of
this article should serve as an important diagnostic
tool for the system identification of an unknown
device. Assuming that angular displacement and
torque can be measured for a step-response, the pro-
posed method should provide value insight for the
characterization of non-linear features (say using a
SDOF approximation), as well as amplitude depend-
ence.19 In cases of relatively high viscous damping, the
method could be applied to only the first few cycles of
oscillations. Overall, the proposed method should
improve the efficiency and accuracy of the model
building process for mechanical devices with clearance
non-linearities.2,19
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Appendix 1

Notation

e error
h Coulomb friction amplitude
J torsional inertia
k torsional stiffness
N total number of stiffness stages
t time
T external torque
w windowing function
� stiffness stage ratio
� window length coefficient
� total torque transmission
� regularizing factor for Coulomb friction
�, _�, €� angular displacement, velocity, and

acceleration
� stage transition (angular)
� estimation metric
� period of oscillation
� elastic torque
� unit-step function
� dissipative torque

Subscripts

a alternating coefficient
adp adaptive window
best ‘‘best’’
box box-car

di double-sided impact
f final point
m mean coefficient
n natural
ni no-impact
o initial point
ov overall response
rr upright
saw saw-tooth
shp shape
si single-sided impact
t instantaneous (time dependent)
tri triangular
w windowing function
I, II, . . . stage index

Superscripts

ðiÞ oscillatory period number
ði ¼ 1, 2, . . . , PÞ

^ effective
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