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a b s t r a c t

This article addresses the frequency dependent properties of elastomeric vibration iso-
lators in the context of lumped parameter models with fractional damping elements. A
mass is placed between two fractional calculus Kelvin-Voigt elements to develop a
minimal order system for the example case of a conventional elastomeric bushing typical

dynamic stiffness spectra and a finite element model. The minimal order system model
accurately predicts dynamic stiffness in both broadband resonant behavior as well as the
lower-frequency regime that is controlled by damping. For transient response analysis, an
inverse Laplace transform of the dynamic stiffness spectrum is taken via the Residue
Theorem. Since the fractional calculus based solution is given in terms of problematic
integrals, a new time-frequency domain estimation technique is proposed which
approximates time-domain responses for a class of transient excitation functions. The
approximation error is quantified and found to be reasonably small, and tractable closed-
form transient response functions are provided along with a discussion of numerical
issues.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Elastomeric isolators, mounts, and bushings are widely used in machines, vehicles, and buildings. In automotive sus-
pension, for instance, bushings are used extensively to ensure vibration isolation and impedance mismatch between critical
subsystems. Such isolators have been analytically studied with continuous system theory [1–3] as well as lumped parameter
models on both the component [4–6] and system [7] level, often with many simplifications. In many cases, isolators exhibit
nonlinear behavior [3–5,8] which may be more readily apparent from transient responses [4,5]. In recent decades, increased
attention has been given to the use of fractional order derivatives to describe the viscoelastic behavior of elastomeric
materials [9–14]. Fractional calculus theory has many physical applications [9,10] and has been applied to viscoelasticity in
the context of pure constitutive relations [10–13], material models suitable for finite element analysis [12], and lumped
system modeling [14,15]. Despite the many approaches to using fractional calculus for viscoelasticity [10], it is still not
widely used in practice, presumably due to the difficulty of the mathematical sophistication which is often required to
produce useful results. Prior approaches to employ fractional calculus can be divided into two categories: analytical
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transformations of fractional calculus formulations based on Cauchy integrals [9–11,13,14] and those numerical estimation
of fractional derivatives based on the variations of the Grünwald definition [9,10,12,15]. Each methodology presents unique
strengths and weaknesses, but this article aims to adopt and build on the analytical approach by introducing an estimation
procedure which may simplify the difficult time-domain transformation calculations [13,14], extending the method to a new
class of system. The chief goal is to develop semi-analytical, time-domain response estimates to a class of transient exci-
tation signals when applied to a tuned elastomeric isolator (with inertial effects) in the context of a minimal order model.
2. Problem formulation

Elastomeric isolation components used in automotive suspension exhibit significant frequency-dependent stiffness
behavior over a wide range of frequencies. Such “tuned” properties result from inertial and damping effects in the material,
each being dominant in a different frequency regime. Capturing the relevant physics in a reduced-order, lumped-parameter
model which is effective over a broad frequency range is challenging. Recently, Noll, et al. developed a lumped parameter
model for an elastomeric joint which clarified the frequency-dependent stiffness by capturing internal mass effects [6]. Their
model offers good broadband dynamic stiffness predictions, but significant error is found in the lower-frequency regime
(say, up to 100 Hz). This error is linked to the damping mechanism assumed in the model [6]. Neither structural nor viscous
damping is able to produce the low-frequency behavior with a minimal-order model [15], although large, empirical vis-
coelastic networks may reproduce the effect on an ad hoc basis. A damping mechanism based on fractional calculus is
expected to yield superior predictions as assumed in this article.

The objectives of this article are as follows: 1. Develop a uniaxial minimal order model which can effectively simulate the
dynamic stiffness of a production bushing, capturing both low-frequency and broadband behavior covering the first reso-
nance (0–1 kHz), and 2. Propose a new estimation technique to yield time-domain solution approximations for transient
excitation using fractional calculus. Spectral characterization of such viscoelastic isolators is useful but insufficient, as the
assumption of purely harmonic excitation is unrealistic and may mask properties of the elastomeric system that are relevant
under aperiodic or transient excitation. Studying transient responses requires a time-domain representation of the system,
such as an impulse response function. Fractional dampers preclude conventional inverse Laplace transform calculations to
obtain the impulse response; however, the transform may be obtained using the Residue Theorem and multi-domain
estimation techniques. The step response is useful in the analysis of elastomeric isolators since it includes an abrupt shift in
the operating loads which may excite interesting behavior from any amplitude-dependent nonlinearities in the system
[3,5,10,12,15]. Determination of such amplitude-dependent behavior is beyond the scope of this work; nevertheless, a “step-
like” input will be used as an example for a realistic transient excitation. Additional complexities may be observed in
elastomeric materials such as temperature dependence, aging effects, and anisotropy [16]. Since dynamic behavior of vis-
coelastic materials often exhibit limited sensitivity to these effects for small perturbations about an operating point, these
are beyond the scope of this work.
3. Spectral characterization and minimal order model

Elastomeric isolators are typically characterized in terms of dynamic stiffness spectra [1–3,6,7]. A comparison between
the measured cross-point stiffness magnitude spectrum and finite element predictions of a laboratory bushing (very similar
to production devices [6]) is given in Fig. 1. Details and parameters of the finite element model are already reported in [6].
Good broadband accuracy is achieved by the finite element model; however, at low frequencies (below 100 Hz), the
measurement reveals a damping mechanism which is not incorporated in the model. Conversely, the measured dynamic
stiffness spectrum only goes up to 600 Hz (due to the limitations of the dynamic elastomer test machine), whereas finite
element models can extend to larger bandwidths to capture stiffness peaks due to the internal mass. Fig. 2 depicts the
simulated dynamic stiffness spectra for a production bushing [6], including both driving-point and cross-point stiffness
Fig. 1. Dynamic stiffness predictions of an elastomeric isolator showing insufficiency of structural damping mechanism available in finite element model
[6]. Key: - Measurement; - Finite element model with structural damping.



Fig. 2. Dynamic stiffness terms of Eq. (2) using a finite element model [6] of a production bushing with structural damping. Key: - K11; -
K12; - K22.

Fig. 3. Example case for the isolator study: (a) schematic of the elastomeric bushing with inner (1) and outer (2) sleeves and viscoelastic material shown in
dark color. Only the axial direction is considered. (b) The proposed minimal order model. Here, x1, x2, and F1, F2 are the displacements and forces of the
inner and outer metallic sleeves, respectively. The effective internal mass of the elastomeric material ism, and y is its displacement. The spring constants k1
and k2 denote the stiffness of the elastic elements whilec1,c2 and α1,α2 denote the fractional damper coefficients and order parameters, respectively.
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curves. A model framework which can predict the broadband dynamics while capturing the measured low-frequency
behavior observed in Fig. 1 would be quite useful.

A minimal order model of a rubber bushing, as shown schematically in Fig. 3(a), is proposed to capture the stiffness,
mass, and damping properties. Here, the 1 and 2 coordinates represent the inner and outer metal sleeves the bushing,
assumed to be rigid compared to the elastomeric material. Fig. 3(b) shows the minimal order model using the four-pole type
representation with arbitrary boundaries [17]. The governing equations (with fractional damping elements) are given by,

m€yþ k1þc1D
α1
t

� �
y tð Þþ k2þc2D

α2
t

� �
y tð Þ ¼ k1þc1D

α1
t

� �
x1 tð Þþ k2þc2D

α2
t

� �
x2 tð Þ; (1-a)

F1 tð Þ ¼ k1þc1D
α1
t

� �
y tð Þ�x1 tð Þð Þ; (1-b)

F2 tð Þ ¼ k2þc2D
α2
t

� �
y tð Þ�x2 tð Þð Þ; (1-c)

where x1, x2, F1, and F2 are the displacements and forces of the inner and outer sleeves, respectively. (Also see Appendix A
for the identification of symbols.) The m parameter is the effective internal mass of the elastomeric material, representing
the effective inertia that participates in the first vibration mode (analogous to a modal mass). The corresponding dis-
placement coordinate is given as y. Fractional Kelvin-Voigt elements characterize the viscoelastic behavior. The spring
constants k1 and k2 denote the stiffness of the elastic elements connecting the internal mass to each boundary. The con-
stitutive equations for the two fractional dampers relate dissipative path force to a fractional derivative of displacement,
F ¼ cDα

t x, where Dα
t is a derivative operator of order α with respect to t. Therefore, the fractional dampers have four

parameters in all: coefficients (c1,c2) and order parameters (α1,α2).
Assuming harmonic excitation, driving point (K11,K22) and cross-point (K12,K21) dynamic stiffness terms for the system

of Fig. 3(b) are defined in the Laplace domain as,

K11 sð Þ ¼ F1
x1

����
x2 ¼ 0

¼ k1þc1sα1ð Þ2
ms2þc1sα1 þc2sα2 þk1þk2

�1; (2-a)



Fig. 4. Dynamic stiffness spectra predicted from the (a) minimal order model and (b) finite element model [6]. Two frequency regimes emerge below and
above 100 Hz. The two models agree qualitatively in terms of broadband behavior. Key: - K11; - K12; - K22.

Fig. 5. Low-frequency behavior of the minimal order model, capturing the damping-controlled convergence to static stiffness while the finite element
predictions fail to capture the behavior. Key: - Minimal order model; - Finite element model [6].
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K22 sð Þ ¼ F2
x2

����
x1 ¼ 0

¼ k2þc2sα2ð Þ2
ms2þc1sα1 þc2sα2 þk1þk2

�1; (2-b)

K12 sð Þ ¼ K21 sð Þ ¼ F2
x1

����
x2 ¼ 0

¼ k1þc1sα1ð Þ k2þc2sα2ð Þ
ms2þc1sα1 þc2sα2 þk1þk2

: (2-c)

Fig. 4 shows plots of the dynamic stiffness terms using assumed, yet realistic model parameters derived from curve-
fitting typical measured stiffness spectra with Eqs. (2-a,b,c), where the dynamic magnitude is normalized by the corre-
sponding static stiffness, k0 ¼ k1k2= k1þk2ð Þ. The minimal order model predictions qualitatively agree with finite element
predictions (of [6], in Fig. 4) in terms of resonance behavior; however, whereas finite element predictions fail to capture the
low-frequency trend, the proposed model produces low-frequency behavior that is similar to the measurements (as shown
in Fig. 5) by using fractional dampers instead of structural damping (in the form of a loss factor).
4. Time domain characterization

An impulse response function can be calculated from any of the dynamic stiffness expressions,

h tð Þ ¼L �1 K sð Þ� �
; (3)

using the inverse Laplace transform,

L�1 K sð Þ� �¼ 1
2πi limR-1

Z ξþ iR

ξ� iR
K sð Þestds; (4)

which is a contour integral in the complex plane, and ξ is a positive, real offset. The Residue Theorem relates a contour
integral along a closed loop C to the residues of all singular points λj of the function enclosed by the loop,Z

C
K sð Þestds ¼ 2πi∑

j
Res K sð Þest ; λj

� �
; (5-a)



Fig. 6. Application of the Residue Theorem showing (a) the Bromwich contour used to evaluate the inverse Laplace transform and (b) division of the
contour into zero and nonzero segments. Key: - Bromwich contour; - Integrals sum to zero; - Inverse Laplace transform segment;

- Remaining segments.
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Res K sð Þest ; λj
� �¼ lim

s→λj
s�λj
� �

K sð Þest : (5-b)

If C encloses any branch points of K sð Þ, then the integrand's discontinuity will violate the conditions of the theorem.
Fractional damping elements generate a branch point at the origin, so the contour is judiciously chosen to avoid it as seen in
Fig. 6(a). Jordan's lemma demonstrates that as R-1 and ρ-0, the integrals along the contours C2a, C2b, and C4 vanish,
leaving three remaining terms as shown in Fig. 6(b),Z

C
K sð Þestds¼

Z
C1

K sð Þestdsþ
Z
C3a

K sð Þestdsþ
Z
C3b

K sð Þestds: (6)

Since the contour C1 is equivalent to the transform integral from Eq. (4), it follows from (4), (5-a), and (6) that

h tð Þ ¼∑
j
Res K sð Þest ; λj

� �� 1
2πi

Z
C3a

K sð Þestdsþ
Z
C3b

K sð Þestds
	 


: (7)

Observe that the two terms of h tð Þ are quite different, and thus they are defined individually as,

h tð Þ ¼ hv tð Þþhr tð Þ; (8)

where hv is the sum of the residues and hr is the remaining integral term. Although it is not obvious from Eq. (7), the two
terms are named in this manner because the residues yield a vibratory response while the integrals produce a relaxation
effect as illustrated in the next two sections.
5. Vibratory response

The vibratory response is given as the sum of the residues of K sð Þest in (7) which requires that any singular points
contained in the region bounded by C are located. Singular points occur at the zeros of the K sð Þ denominator
Z sð Þ ¼ms2þc1sα1 þc2sα2 þk1þk2, which (unlike the simple harmonic oscillator systems with viscous damping) is a fractional
polynomial. Given complications in root-finding calculations, several approaches may be used to locate these roots. First,
assume that both fractional order parameters are rational (α1 ¼ q1=n, α2 ¼ q2=n, where q1, q2, and n are integers) and
defining a second Laplace variable, p¼ s1=n. Z is now converted to a more conventional polynomial,

Z ¼ms2þc1sα1 þc2sα2 þk1þk2 ¼mp2nþc1pq1 þc2pq2 þk1þk2: (9)

The roots may be calculated by generating a Frobenius companion matrix [18] and calculating its eigenvalues. This yields
the 2n roots of the right hand side of Eq. (9), which should collapse to the two roots of the left hand side,λs ¼ λnp . However, an
unacceptable degree of error may creep into the calculation of companion matrix eigenvlaues for a large n (which may
become quite large for arbitrary fractional order parameters), and thus the roots λp may fail to collapse to just two roots λs.
Due to the inherent extreme behavior of K sð Þ near these roots, the residues may be sensitive to the error in singular point
values, and therefore an alternate technique is proposed below.

The Newton–Raphson Method is a classical approach for both root-finding and minimization problems. Although it is an
iterative approach, this method can locate a function's roots in the complex plane with high precision after only a few steps
given a well-behaved function and a good initial guess. As it happens, the example case in this article offers both. For
0oα1;α2o1, there are always two complex-conjugate roots in the left half-plane. Selection of an initial guess in quadrant II
(e.g. s0 ¼ �1þ i) leads to a quick convergence to the singular point in that quadrant with a very high degree of precision, as
shown in Fig. 7.



Fig. 7. Minimization procedure using the Newton–Raphson Method to locate singular points in the transfer function. Key: - Approximate singular point
location; - Path of Newton–Raphson Method.
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Once the singular points λs;λ
�
s are calculated, the residues may be evaluated. For the cross-point dynamic stiffness, the

residue from Eq. (2-c) is,

Res K sð Þest ; λs
� �¼ lim

s→λs

s�λsð Þ k1þc1sα1ð Þ k2þc2sα2ð Þ
ms2þc1sα1 þc2sα2 þk1þk2

est ; (10)

which yields an indeterminate form. Application of L’Hopital's rule leads to a simplified solution as,

Res K sð Þest ; λs
� �¼ k1þc1λα1s

� �
k2þc2λα2s
� �

2msþα1c1λα1 �1
s þα1c2λα2 �1

s

eλst ¼ Aþ iBð Þe aþ ibð Þt ; (11-a)

Res K sð Þest ; λ�s
� �¼ A� iBð Þe a� ibð Þt ; (11-b)

where a;b are the real and imaginary parts of the quadrant III singular point and A;B are the real and imaginary parts of its
residue, respectively. The vibratory impulse response hv tð Þ is now calculated,

hv tð Þ ¼ Aþ iBð Þe aþ ibð Þtþ A� iBð Þe a� ibð Þt ; (12)

and rewritten as,

hv tð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

q
eat sin btþθð Þ; (13-a)

θ¼ tan �1 A
�B

	 

: (13-b)
6. Relaxation response

The second term of the impulse response function in Eq. (7) is somewhat more difficult to calculate. The integrals can be
simplified by letting s¼ ℓeiπ on C3a and s¼ ℓe� iπ on C3b,

hr tð Þ ¼ � 1
2πilimρ→0

lim
R→∞

Z R

ρ
K ℓeiπ
� 


�K ℓe� iπ
� 
� 


e�ℓtdℓ: (14)

Using (2-c) in (14) yields,

hr tð Þ ¼ � 1
πi

Z ∞

0
Im K ℓeiπ

� 
h i
e�ℓtdℓ; (15)

which cannot be evaluated by conventional integration techniques. While it is always possible that a solution to this integral
exists, any significant modifications to K sð Þ would likely require new analytical solutions, so an alternate approach is sug-
gested. Decompose K sð Þ into vibratory and relaxation terms by taking the Laplace transform of Eq. (8) as shown in Fig. 8,

Kr sð Þ ¼ K sð Þ�L hv tð Þ� �
: (16)

The plot of Fig. 8 illustrates that Kv sð Þ is itself a relatively crude approximation of K sð Þ, while the effects of Kr sð Þ are an
order of magnitude smaller except at the very low frequency end. Nevertheless, capturing such low-frequency behavior is
among the benefits of using fractional damping in a reduced order model. The algebraic expression for Kr sð Þ is quite
complicated and would not always have a convenient inverse Laplace transform. As such, the following two-parameter



Fig. 9. Estimation of the relaxation stiffness component in terms of (a) magnitude and (b) phase. Key: - K – Kv; - K̂r .

Fig. 10. Dynamic stiffness estimation in terms of (a) magnitude and (b) phase. Key: - Vibratory dynamic stiffness, K1; - Total dynamic

stiffness estimate, K̂r; - True dynamic stiffness, Kr.

Fig. 8. Spectral components of the dynamic stiffness where the vibratory stiffness term may serve as a rough estimate of the total dynamic stiffness. Key:
- Total dynamic stiffness, K; - Vibratory dynamic stiffness, Kv; - Relaxation dynamic stiffness, Kr.
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functional approximation is proposed to yield similar behavior with greatly simplified calculations,

K̂r sð Þ ¼
h20

s�β
� �η; (17-a)

h20 ¼ �β
� �ηRe Kr 0ð Þ½ �: (17-b)

The two parameters β;η are chosen to approximate the magnitude, K̂r sð Þ � Kr sð Þj
������� , and a good agreement in magnitude

is achieved as shown in Fig. 9. However, significant phase error exists, but the corresponding amplitude is quite small so it is
ultimately negligible when combined with Kv sð Þ. The mean-squared error of the estimate ε may be quantified as follows for
typical, realistic model parameters,

ε¼ 1

Nk20

XN
j

K̂j�Kj

� 

K̂
�
j �K�

j

� 

: (18)



Fig. 11. Impulse response function, showing both vibratory and relaxation components. Key: - Total impulse response, h tð Þ; - Relaxation

impulse response term, ĥr tð Þ; - Vibratory impulse response term, hv tð Þ.
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Fig. 10 compares the K̂ sð Þ estimate with the original K sð Þ expression, obtaining εo1% and showing substantial
improvement over a viscously damped approximation as exemplified by Kv sð Þ. Recall that the functional form of K̂r sð Þ is
chosen in Eq. (17-a) in part for its inverse Laplace transform which is given by,

ĥr tð Þ ¼L �1 h20
s�β
� �η

( )
¼ h20
Γ η
� �tη�1eβt ; (19)

where Γ Uð Þ is Euler's Gamma function. This leads to the estimate form of Eq. (8), ĥ tð Þ ¼ hv tð Þþ ĥr tð Þ, which is illustrated in
Fig. 11. The plot illustrates expected behavior of hv tð Þ as equivalent to a viscously damped second-order system response, but
the effects of ĥr tð Þ are less apparent from the impulse response. Mathematically, ĥr tð Þ-�1 as t-0þ , but the physical
meaning and consequences will become clear when the response to a realistic transient excitation is studied in the next
section.
7. Response to a transient excitation

The following function represents a realistic displacement profile of a dynamic elastomer test machine [19] simulating a
“step-like” excitation,

x tð Þ ¼ X 1�e� t=T
� 


; (20)

which is equivalent to a first-order system response where T is the time constant. Calculating the “step-like” response to this
input requires an evaluation of the following convolution integral,

F tð Þ ¼
Z t

0
ĥ τð Þx t�τð Þdτ; (21)

from which the vibratory and relaxation transient responses may be separated as,

Fv tð Þ ¼ 2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

q Z t

0
eaτ sin bτþθð Þ 1�e� t� τð Þ=T

� 

dτ; (22-a)

F̂r tð Þ ¼
h20X
Γ ηð Þ

Z t

0
τη�1eβτ 1�e� t� τð Þ=T

� 

dτ: (22-b)

Eq. (22-a) may be expanded using trigonometric identities,

Fv tð Þ ¼ 2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

q cos θð Þ R t
0 e

aτ sin bτð Þdτ�e� t=T
R t
0 e

aþ1=Tð Þτ sin bτð Þdτ
� 


þ sin θð Þ R t
0 e

aτ cos bτð Þdτ�e� t=T
R t
0 e

aþ1=Tð Þτ cos bτð Þdτ
� 


2
64

3
75; (23)

and then integrated,

Fv tð Þ ¼ 2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

q
eat sin btþψð Þ� sin ψð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þb2
p �eat sin btþψT

� ��e� t=T sin ψT
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ1

T

� �2þb2
q

0
B@

1
CA; (24-a)

ψ ¼ θ� tan �1 b
a

	 

; ψ T ¼ θ� tan �1 b

aþ1=T

	 

: (24-b,c)

Next, the relaxation response is divided in a similar manner,

F̂r tð Þ ¼
h20X
Γ ηð Þ

Z t

0
τη�1eβτdτ�e� t=T

Z t

0
τη�1e βþ1=Tð Þτdτ

� �
; (25)



Fig. 12. Transient response of the isolator of Fig. 3(b) to “step-like” inputs with time constants of (a) T¼5 ms and (b) T¼2 ms. Key: - Vibratory

response, Fv tð Þ; - Relaxation response, F̂r tð Þ; - Total response, F̂ tð Þ; - Zeroth-order response, k0x tð Þ.
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and solved in terms of the incomplete Gamma function,

F̂r tð Þ ¼
�h20X
Γ ηð Þ �βð Þ�ηΓ η; �βτð Þ½ �t0�e� t=T �β�1

T

	 
� η

Γ η; � βþ1
T

	 

τ

	 
� �τ
0

	 

: (26)

The solution may be further simplified in terms of the lower incomplete Gamma function [20],

F̂r tð Þ ¼ h20X
Γ ηð Þ �βð Þ� ηγ η; �βtð Þ�e� t=T �β�1

T

	 
� η

γ η; � βþ1
T

	 

t

	 
	 

: (27)

The lower incomplete gamma function may be expressed as a power series [20],

γ a; bð Þ ¼ Γ að Þbae�b ∑
∞

j ¼ 0

bj

Γ aþ jþ1ð Þ; (28-a)

leading to the simplification,

F̂r tð Þ ¼ h20Xtηeβt ∑
∞

j ¼ 0

�tð Þj βð Þj� βþ1=T
� �j� 


Γ ηþ jþ1ð Þ : (28-b)

Observe two-parameter Mittag-Leffler functions (Eα;β zð Þ, as reported in [9,21]) in Eq. (27-a), and thus it is written more
compactly as,

F̂r tð Þ ¼ h20Xtηeβt E1;ηþ1 �βtð Þ�E1;ηþ1 � βþ1
T

	 

t

	 
� �
: (29)
8. Results and discussion of the transient response

The overall transient response is compared with each term as well as the response of a model with zeroth-order system
dynamics ðK sð Þ ¼ k0Þ in Fig. 12, and the significance of the relaxation response (for which it is named) emerges. Two time
scales are apparent. One time scale is on the order of the natural period of the internal mass (1.8 ms for this system) and
governs the oscillations in the vibratory response. Conversely, the second time scale represents a slower process (about
40 ms to saturation) whereby the force transmitted from the transient event relaxes to the static equilibrium. The vibratory
response behaves as a second-order system (with a pair of complex roots), while the relaxation response in some ways
resembles a first-order system (with one real valued, negative root). This suggests that the fractionally damped isolator
model (with a mass element) qualitatively behaves like a third-order dynamic system, even though the differential Eq. (1-a)
is only of the second order.

The attributes of a fractionally damped system have significant physical ramifications for the design of vibration isolation
or energy absorption components. While the spectral stiffness properties remain relevant to the design process, many
applications would involve harsh transient excitation which may not reflect the frequency-domain behavior. For instance,
the effect of the step time constant T on this particular system is significant. As one would expect, a quicker rise time excites
the system more abruptly, producing increased oscillation and a more pronounced relaxation. These two behaviors are also
strongly affected by the α1;α2 parameters, as seen in Fig. 13. An increased in the fractional damping order would decrease
the settling time in terms of both ring-down and relaxing to the static equilibrium, but it increases the overshoot of the non-
oscillatory response.



Fig. 14. Transient response showing numerical divergence using T¼1 ms. α1 ¼ α2 ¼ 2α. Key: - Vibratory response, Fv tð Þ; - Relaxation

response, F̂r tð Þ; - Total response, F̂ tð Þ; - Zeroth-order response, k0x tð Þ.

Fig. 13. Sensitivity of “step-like” responses to fractional order parameters: (a) α1 ¼ α2 ¼ 0:075, (b) α1 ¼ α2 ¼ 0:15, and (c) α1 ¼ α2 ¼ 0:30. Key: -

Vibratory response, Fv tð Þ; - Relaxation response, F̂r tð Þ; - Total response, F̂ tð Þ; - Zeroth-order response, k0x tð Þ.
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It must be noted that the transient responses discussed in this article rely on the accurate evaluation of the Mittag-Leffler
functions in Eq. (29). Due to computational limitations, these functions converge only within a finite time range, after which
the error becomes excessively large. Fig. 14 illustrates this problem. The time range for which the solution converges is
sensitive to both the model and its excitation parameters, most notably α1;α2 and T , respectively. Using a recursive defi-
nition of the Mittag-Leffler function in the context of the power series partially mitigates this problem. Since the initial
transient behavior resulting from realistic excitations are within the convergent time range, an examination of more
advanced methods for evaluating Mittag-Leffler functions [21] is beyond the scope of this article.
9. Conclusion

The major contribution of this article is the successful development of a minimal order system model of tuned, frac-
tionally damped vibration isolator where the limitations of a finite element model with structural damping at the low-
frequency end are overcome. This benchmark model should provide a convenient vehicle for further studies in this area. The
second major contribution is the new time-frequency domain estimation procedure to calculate time-domain responses of a
class of tuned, fractionally damped elastomeric joint models to realistic transient excitations. While direct analytical
solutions are possible for some fractionally damped systems, the multi-domain approach proposed in this article may yield
good solution estimates especially in those cases where direct solutions are infeasible. Difficulties related to the evaluation
of complex, improper integrals which arise using the Residue Theorem for inverse Laplace transformation [9–11,13,14] are
avoided by approximating troublesome terms with similar functions having a more well-behaved analytical behavior. This
approximation achieves excellent accuracy, introducing only a minimal mean-squared error. The proposed method high-
lights interesting physical characteristics of a fractionally damped system, including parallel vibratory and relaxation
behavior qualitatively similar to a third-order system despite starting with a second-order differential equation. Finally, this
article makes a contribution to the fractional calculus based applications [9–15].

The methods proposed in this article have certain limitations resulting from the problem formulation in terms of a single
degree of freedom (implying uniaxial motion) and assumptions which permit a tractable solution. Linearity is implicit to the
Laplace transform, and thus the proposed analytical framework is valid for small perturbations about operating point in
terms of amplitude, preload, temperature, material orientation, aging, etc. [16]. The proposed solutions provide meaningful
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physical insight in the context of engineering analyses of automotive suspensions and other physical systems which employ
viscoelastic isolators.
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Appendix A. List of Symbols

a real part of quadrant II singular point
A real part of quadrant II residue
b imaginary part of quadrant II singular point
B imaginary part of quadrant II residue
c fractional damper coefficient
C Bromwich contour
D derivative operator
E two-parameter Mittag-Leffler function
h impulse response
j index
k spring stiffness coefficient
K dynamic stiffness
ℓ integration variable
L Laplace transform operator
m effective internal mass
n common denominator of fractional orders
N maximum number of terms
p scaled Laplace variable
q fractional order numerator
r relaxation response
R outer Bromwich contour radius
Res simple residue
s Laplace transform variable
t time
T time constant for step-like excitation
v vibratory response
x displacement of boundary
X step height
y displacement of internal mass
Z dynamic stiffness denominator
α fractional damper order
β estimation root
η estimation exponent
ε mean squared Laplace-domain error
γ Uð Þ lower incomplete gamma function
Γ Uð Þ Gamma function
Γ U ; Uð Þ upper incomplete Gamma function
θ phase offset of vibratory response
ψ step-like response phase offset
ξ positive real offset
λ singular point
ρ inner Bromwich radius
τ integration time

http://www.SmartVehicleCenter.org
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Subscripts

0 static
1;2 coordinate of inner/outer sleeve

Superscripts

� complex conjugate
^ estimate
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