Seminar: 3-D Printing Functional Materials & Devices

Michael C. McAlpine, PhD, University of Minnesota

All dates for this event occur in the past.

E525 Scott Lab
E525 Scott Lab
201 W. 19th Ave.
Columbus, OH 43210
United States

Abstract

The ability to three-dimensionally interweave biological and functional materials could enable the creation of bioelectronic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronics, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3-D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3-D printing and imaging for personalized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials; and (3) 3-D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional materials with biology. Moreover, 3-D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3-D printing, functional materials, and ‘living’ platforms may enable next-generation 3-D printed devices.

About the Speaker

Michael C. McAlpine is the Benjamin Mayhugh Associate Professor of Mechanical Engineering at the University of Minnesota (2015-Present). He was an Assistant Professor of Mechanical and Aerospace Engineering at Princeton University (2008-2015). He received a B.S. in Chemistry with honors from Brown University (2000) and a Ph.D. in Chemistry from Harvard University (2006). His research is focused on 3D printing functional materials & devices. He has received a number of awards: Presidential Early Career Award for Scientists and Engineers (PECASE), NIH Director’s New Innovator Award, TR35 Young Innovator Award, Air Force Young Investigator Award, Intelligence Community Young Investigator Award, DuPont Young Investigator Award, National Academy of Sciences Frontiers Fellow, DARPA Young Faculty Award, American Asthma Foundation Early Excellence Award, Graduate Student Mentoring Award, Extreme Mechanics Letters Young Lecturer, National Academy of Engineering Frontiers in Engineering.

Hosted by Professor Ryan L. Harne.