Skip to main content

Dissertation Defense: Process Control and Development for Ultrasonic Additive Manufacturing with Embedded Fibers

Adam Hehr, PhD Candidate, Mechanical Engineering

All dates for this event occur in the past.

E525 Scott Lab
E525 Scott Lab
201 W. 19th Ave.
Columbus, OH 43210
United States

Committee

  • Professor Marcelo Dapino, Chair (ME)
  • Professor Blaine Lilly (ME)
  • Professor Krishnaswamy Srinivasan (ME)
  • Professor Peter Anderson (MSE)
  • Professor Sudarsanam Suresh Babu


Abstract

Ultrasonic additive manufacturing (UAM) is a recent additive manufacturing technology which combines ultrasonic metal welding, CNC machining, and mechanized foil layering to create large gapless near net-shape metallic parts. The process has been attracting much attention lately due to its low formation temperature, the capability to join dissimilar metals, and the ability to create complex design features not possible with traditional subtractive processes alone. These process attributes enable light-weighting of structures and components in an unprecedented way. However, UAM is currently limited to niche areas due to the lack of quality tracking and inadequate scientific understanding of the process. As a result, this thesis work is focused on improving both component quality tracking and process understanding through the use of average electrical power input to the welder. Additionally, the understanding and application space of embedding fibers into metals using UAM is investigated, with particular focus on NiTi shape memory alloy fibers.