Skip to main content

Computational Combustion and Energy Lab: Publications

Publications

Peer-Reviewed Journal Papers

  • Y. Su and S. H. Kim, "Stretch effects in large eddy simulation of turbulent premixed Bunsen flames," Combust. Sci. Tech. https://doi.org/10.1080/00102202.2023.2214694 (2023).

  • A. Jain and S. H. Kim, "Local equilibrium and discretization effects on the prediction of scalar dissipation rates in large eddy simulation of turbulent non-premixed combustion," Combust. Sci. Tech. 195, 2697-2715 (2023).

  • Y. Su, D. Splitter and S. H. Kim, "Laminar-to-turbulent flame transition and cycle-to-cycle variations in large eddy simulation of spark-ignition engines," Int. J. Engine Res. 22, 2803-2818 (2021).

  • S. H. Kim and Y. Su, "Front propagation formulation for large eddy simulation of turbulent premixed flames," Combust. Flame 220, 439-454 (2020).

  • W. Zheng, J. Kang, K. Moriyama and S. H. Kim, "A multiscale decomposition method for pore-scale simulation of multiphase transport and reactions in cathode catalyst layers of proton exchange membrane fuel cells," J. Electrochem. Soc. 167013509 (2020).

  • A. Jain and S. H. Kim, "On the non-equilibrium models for subfilter scalar variance in large eddy simulation of turbulent mixing and combustion," Phys. Fluids 31, 025112 (2019).

  • W. Wang and S. H. Kim, "Sensible-enthalpy-based conditional moment closure model for homogeneous charge compression ignition with temperature inhomogeneity," Flow, Turbulence and Combustion 102, 775-794 (2019).

  • J. Tao, M. Imre, C. Wang, N. V. Chawla, H. Guo, G. Sever and S. H. Kim, “Exploring time-varying multivariate volume data using matrix of isosurface similarity maps,” IEEE Transactions on Visualization and Computer Graphics 25, 1236-1245 (2019).

  • Y. Su and S. H. Kim, "An improved consistent, conservative, non-oscillatory and high order finite difference scheme for variable density low Mach number turbulent flow simulation," J. Comput. Phys. 372, 202-219 (2018).

  • W. Zheng and S. H. Kim, "The effects of catalyst layer microstructure and water saturation on the effective diffusivity in PEMFC," J. Electrochem. Soc. 165, F468-F478 (2018).

  • J. Tao, C. Wang, N. V. Chawla, L. Shi, and S. H. Kim, "Semantic flow graph: A framework for discovering object relationships in flow fields," IEEE Trans. Vis. Comput. Graph 24, 3200-3213 (2018). 

  • W. Zheng and S. H. Kim, "A multiscale approach to accelerate pore-scale simulation of porous electrodes," J. Power Sources 348, 21-29 (2017).

  • S. H. Kim, "Leading points and heat release effects in turbulent premixed flames," Proc. Combust. Inst. 36, 2017-2024 (2017).

  • J. Kang, K. Moriyama, and S. H. Kim, "An extended stochastic reconstruction method for catalyst layers in proton exchange membrane fuel cells," J. Power Sources 325, 752-761 (2016).

  • Y. Gu, C. Wang, T. Peterka, R. Jacob, and S. H. Kim, "Mining graphs for understanding time-varying volumetric data," IEEE Trans. Vis. Comput. Graph 22, 965-974 (2016).

  • S. H. Kim and H. Pitsch, "On the lattice Boltzmann method for multiphase flows with large density ratios," J. Comput. Phys.303, 19-27 (2015).

  • S. H. Kim, "A front propagation formulation for under-resolved reaction fronts," J. Comput. Phys. 285, 193-207 (2015).
  • J. Tao, C. Wang, C.-K. Shene, S. H. Kim, "A deformation framework for Focus+Context flow visualization," IEEE Trans. Vis. Comput. Graph 20, 42-55 (2014).
  • S. De and S. H. Kim,  "Large eddy simulation of dilute reacting sprays: Droplet evaporation and scalar mixing," Combust. Flame 160, 2048-2066 (2013).
  • E. W. Knudsen, S. H. Kim, and H. Pitsch,  "An analysis of premixed flamelet models for large eddy simulation of turbulent combustion," Phys. Fluids 22, 115109 (2010).
  • S. H. Kim and H. Pitsch, "Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells," J. Electrochem. Soc. 156, B673-B681 (2009).
  • S. H. Kim, H. Pitsch, and I. D. Boyd, "Lattice Boltzmann modeling of multicomponent diffusion in narrow channels," Phys. Rev. E 79, 016702 (2009) (selected for Virtual J. Nanoscale Sci. Tech., Jan. 19, 2009).
  • S. H. Kim, H. Pitsch, and I. D. Boyd, "Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers," J. Comput. Phys. 227, 8655-8671 (2008).
  • S. H. Kim and H. Pitsch, "Analytic solution for a higher-order lattice Boltzmann method: Slip velocity and Knudsen layer," Phys. Rev. E 78, 016702 (2008).
  • S. H. Kim, H. Pitsch, and I. D. Boyd, "Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows," Phys. Rev. E 77, 026704 (2008) (selected for Virtual J. Nanoscale Sci. Tech., Feb. 25, 2008).
  • S. H. Kim and H. Pitsch, "Scalar gradient and small-scale structure in turbulent premixed combustion," Phys. Fluids 19, 115104 (2007).
  • S. H. Kim and R. W. Bilger, "Iso-surface mass flow density and its implications for turbulent mixing and combustion," J. Fluid Mech. 590, 381-409 (2007).  
  • S. H. Kim and H. Pitsch, "A generalized periodic boundary condition for lattice Boltzmann method simulation of a pressure driven flow in a periodic geometry," Phys. Fluids 19, 108101 (2007).
  • S. H. Kim and H. Pitsch, "Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body," Phys. Fluids 18, 075103 (2006).
  • S. H. Kim and H. Pitsch, "Conditional filtering method for large-eddy simulation of turbulent nonpremixed combustion," Phys. Fluids 17, 105103 (2005).
  • S. H. Kim, C. H. Choi, and K. Y. Huh, "Second-order conditional moment closure modeling of a turbulent CH4/H2/N2 jet diffusion flame," Proc. Combust. Inst. 30, 735-742 (2005).
  • S. H. Kim, K. Y. Huh, and B. Dally, "Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow," Proc. Combust. Inst. 30, 751-757 (2005).
  • S. H. Kim and K. Y. Huh, "Second-order conditional moment closure modeling of turbulent piloted jet diffusion flames," Combust. Flame  138, 336-352 (2004).
  • S. H. Kim, K. Y. Huh, and R. W. Bilger, "Second-order conditional moment closure modeling of local extinction and reignition in turbulent non-premixed hydrocarbon flames," Proc. Combust. Inst. 29, 2131-2137 (2002).
  • S. H. Kim, "On the conditional variance and covariance equations for second-order conditional moment closure," Phys. Fluids 14, 2011-2014 (2002).
  • S. H. Kim and K. Y. Huh, "Use of the conditional moment closure model to predict NO formation in a turbulent CH4/H2 flame over a bluff-body," Combust. Flame 130, 94-111 (2002).
  • S. H. Kim, K. Y. Huh, and R. A. Fraser, "Modeling autoignition of a turbulent methane jet by the conditional moment closure model," Proc. Combust. Inst. 28, 185-191 (2000).
  • S. H. Kim, K. Y. Huh, and T. Liu, "Application of the elliptic conditional moment closure model to a two-dimensional nonpremixed methanol bluff-body flame," Combust. Flame 120, 75-90 (2000).
  • S. H. Kim and K. Y. Huh, "A new angular discretization scheme of the finite volume method for 3-D radiative heat transfer in absorbing, emitting and anisotropically scattering media," Int. J. Heat Mass Transfer 43, 1233-1242 (2000).
  • S. H. Kim, K. Y. Huh, and R. A. Fraser, "Numerical prediction of the autoignition delay in a Diesel-like environment by the conditional moment closure model," SAE Trans. J. Engines 109, 2000-01-0200 (2000).
  • S. H. Kim, T. Liu, and K. Y. Huh, "Implementation of the conditional moment closure model to a nonpremixed H2/CO-air flame stabilised on a bluff-body," Trans. Can. Soc. Mech. Eng. 23, 425-433 (1999).
  •  S. H. Kim and K. Y. Huh, "Assessment of the finite-volume method and the discrete ordinate method for radiative heat transfer in a three-dimensional rectangular enclosure," Numerical Heat Transfer Pt. B 35, 85-112 (1999).